Difference between revisions of "RFC5405"

From RFC-Wiki
 
Line 7: Line 7:
 
       Unicast UDP Usage Guidelines for Application Designers
 
       Unicast UDP Usage Guidelines for Application Designers
  
Status of This Memo
+
'''Status of This Memo'''
  
 
This document specifies an Internet Best Current Practices for the
 
This document specifies an Internet Best Current Practices for the
Line 13: Line 13:
 
improvements.  Distribution of this memo is unlimited.
 
improvements.  Distribution of this memo is unlimited.
  
Copyright Notice
+
'''Copyright Notice'''
  
 
Copyright (c) 2008 IETF Trust and the persons identified as the
 
Copyright (c) 2008 IETF Trust and the persons identified as the
 
document authors.  All rights reserved.
 
document authors.  All rights reserved.
  
This document is subject to BCP 78 and the IETF Trust's Legal
+
This document is subject to [[BCP78|BCP 78]] and the IETF Trust's Legal
 
Provisions Relating to IETF Documents (http://trustee.ietf.org/
 
Provisions Relating to IETF Documents (http://trustee.ietf.org/
 
license-info) in effect on the date of publication of this document.
 
license-info) in effect on the date of publication of this document.
Line 24: Line 24:
 
and restrictions with respect to this document.
 
and restrictions with respect to this document.
  
Abstract
+
'''Abstract'''
  
 
The User Datagram Protocol (UDP) provides a minimal message-passing
 
The User Datagram Protocol (UDP) provides a minimal message-passing
Line 37: Line 37:
 
the document also provides guidance on other topics, including
 
the document also provides guidance on other topics, including
 
message sizes, reliability, checksums, and middlebox traversal.
 
message sizes, reliability, checksums, and middlebox traversal.
 
Table of Contents
 
 
1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
 
2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  5
 
3.  UDP Usage Guidelines . . . . . . . . . . . . . . . . . . . . .  5
 
  3.1.  Congestion Control Guidelines  . . . . . . . . . . . . . .  6
 
  3.2.  Message Size Guidelines  . . . . . . . . . . . . . . . . . 11
 
  3.3.  Reliability Guidelines . . . . . . . . . . . . . . . . . . 12
 
  3.4.  Checksum Guidelines  . . . . . . . . . . . . . . . . . . . 13
 
  3.5.  Middlebox Traversal Guidelines . . . . . . . . . . . . . . 15
 
  3.6.  Programming Guidelines . . . . . . . . . . . . . . . . . . 17
 
  3.7.  ICMP Guidelines  . . . . . . . . . . . . . . . . . . . . . 18
 
4.  Security Considerations  . . . . . . . . . . . . . . . . . . . 19
 
5.  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
 
6.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 22
 
7.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 22
 
  7.1.  Normative References . . . . . . . . . . . . . . . . . . . 22
 
  7.2.  Informative References . . . . . . . . . . . . . . . . . . 23
 
  
 
== Introduction ==
 
== Introduction ==
  
The User Datagram Protocol (UDP) [RFC0768] provides a minimal,
+
The User Datagram Protocol (UDP) [[RFC0768]] provides a minimal,
 
unreliable, best-effort, message-passing transport to applications
 
unreliable, best-effort, message-passing transport to applications
 
and upper-layer protocols (both simply called "applications" in the
 
and upper-layer protocols (both simply called "applications" in the
 
remainder of this document).  Compared to other transport protocols,
 
remainder of this document).  Compared to other transport protocols,
UDP and its UDP-Lite variant [RFC3828] are unique in that they do not
+
UDP and its UDP-Lite variant [[RFC3828]] are unique in that they do not
 
establish end-to-end connections between communicating end systems.
 
establish end-to-end connections between communicating end systems.
 
UDP communication consequently does not incur connection
 
UDP communication consequently does not incur connection
Line 74: Line 55:
 
send UDP datagrams at the line rate of the link interface, which is
 
send UDP datagrams at the line rate of the link interface, which is
 
often much greater than the available path capacity, and doing so
 
often much greater than the available path capacity, and doing so
contributes to congestion along the path.  [RFC2914] describes the
+
contributes to congestion along the path.  [[RFC2914]] describes the
 
best current practice for congestion control in the Internet.  It
 
best current practice for congestion control in the Internet.  It
 
identifies two major reasons why congestion control mechanisms are
 
identifies two major reasons why congestion control mechanisms are
Line 90: Line 71:
 
up to the applications that use UDP for Internet communication to
 
up to the applications that use UDP for Internet communication to
 
employ suitable mechanisms to prevent congestion collapse and
 
employ suitable mechanisms to prevent congestion collapse and
establish a degree of fairness.  [RFC2309] discusses the dangers of
+
establish a degree of fairness.  [[RFC2309]] discusses the dangers of
 
congestion-unresponsive flows and states that "all UDP-based
 
congestion-unresponsive flows and states that "all UDP-based
 
streaming applications should incorporate effective congestion
 
streaming applications should incorporate effective congestion
Line 112: Line 93:
 
efficiency and should be avoided.  IPv6 allows the option of
 
efficiency and should be avoided.  IPv6 allows the option of
 
transmitting large packets ("jumbograms") without fragmentation when
 
transmitting large packets ("jumbograms") without fragmentation when
all link layers along the path support this [RFC2675].  Some of the
+
all link layers along the path support this [[RFC2675]].  Some of the
 
guidelines in Section 3 describe how applications should determine
 
guidelines in Section 3 describe how applications should determine
 
appropriate message sizes.  Other sections of this document provide
 
appropriate message sizes.  Other sections of this document provide
Line 128: Line 109:
 
use UDP for unicast transmission, which is the most common case.
 
use UDP for unicast transmission, which is the most common case.
 
Specialized classes of applications use UDP for IP multicast
 
Specialized classes of applications use UDP for IP multicast
[RFC1112], broadcast [RFC0919], or anycast [RFC1546] transmissions.
+
[[RFC1112]], broadcast [[RFC0919]], or anycast [[RFC1546]] transmissions.
 
The design of such specialized applications requires expertise that
 
The design of such specialized applications requires expertise that
 
goes beyond the simple, unicast-specific guidelines given in this
 
goes beyond the simple, unicast-specific guidelines given in this
Line 135: Line 116:
 
time, which significantly complicates congestion control, flow
 
time, which significantly complicates congestion control, flow
 
control, and reliability mechanisms.  The IETF has defined a reliable
 
control, and reliability mechanisms.  The IETF has defined a reliable
multicast framework [RFC3048] and several building blocks to aid the
+
multicast framework [[RFC3048]] and several building blocks to aid the
designers of multicast applications, such as [RFC3738] or [RFC4654].
+
designers of multicast applications, such as [[RFC3738]] or [[RFC4654]].
 
Anycast senders must be aware that successive messages sent to the
 
Anycast senders must be aware that successive messages sent to the
 
same anycast IP address may be delivered to different anycast nodes,
 
same anycast IP address may be delivered to different anycast nodes,
Line 157: Line 138:
 
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119
+
document are to be interpreted as described in [[BCP14|BCP 14]], [[RFC2119|RFC 2119]]
[RFC2119].
+
[[RFC2119]].
  
 
== UDP Usage Guidelines ==
 
== UDP Usage Guidelines ==
Line 180: Line 161:
 
Consequently, the RECOMMENDED alternative to the UDP usage described
 
Consequently, the RECOMMENDED alternative to the UDP usage described
 
in the remainder of this section is the use of an IETF transport
 
in the remainder of this section is the use of an IETF transport
protocol such as TCP [RFC0793], Stream Control Transmission Protocol
+
protocol such as TCP [[RFC0793]], Stream Control Transmission Protocol
(SCTP) [RFC4960], and SCTP Partial Reliability Extension (SCTP-PR)
+
(SCTP) [[RFC4960]], and SCTP Partial Reliability Extension (SCTP-PR)
[RFC3758], or Datagram Congestion Control Protocol (DCCP) [RFC4340]
+
[[RFC3758]], or Datagram Congestion Control Protocol (DCCP) [[RFC4340]]
 
with its different congestion control types
 
with its different congestion control types
[RFC4341][RFC4342][CCID4].
+
[[RFC4341]][[RFC4342]][CCID4].
  
 
If used correctly, these more fully-featured transport protocols are
 
If used correctly, these more fully-featured transport protocols are
Line 193: Line 174:
 
addition, many TCP implementations allow connections to be tuned by
 
addition, many TCP implementations allow connections to be tuned by
 
an application to its purposes.  For example, TCP's "Nagle" algorithm
 
an application to its purposes.  For example, TCP's "Nagle" algorithm
[RFC0896] can be disabled, improving communication latency at the
+
[[RFC0896]] can be disabled, improving communication latency at the
 
expense of more frequent -- but still congestion-controlled -- packet
 
expense of more frequent -- but still congestion-controlled -- packet
 
transmissions.  Another example is the TCP SYN cookie mechanism
 
transmissions.  Another example is the TCP SYN cookie mechanism
[RFC4987], which is available on many platforms.  TCP with SYN
+
[[RFC4987]], which is available on many platforms.  TCP with SYN
 
cookies does not require a server to maintain per-connection state
 
cookies does not require a server to maintain per-connection state
 
until the connection is established.  TCP also requires the end that
 
until the connection is established.  TCP also requires the end that
Line 216: Line 197:
 
congestion-controlled transport protocol, it SHOULD control the rate
 
congestion-controlled transport protocol, it SHOULD control the rate
 
at which it sends UDP datagrams to a destination host, in order to
 
at which it sends UDP datagrams to a destination host, in order to
fulfill the requirements of [RFC2914].  It is important to stress
+
fulfill the requirements of [[RFC2914]].  It is important to stress
 
that an application SHOULD perform congestion control over all UDP
 
that an application SHOULD perform congestion control over all UDP
 
traffic it sends to a destination, independently from how it
 
traffic it sends to a destination, independently from how it
Line 249: Line 230:
 
In the past, the IETF has also investigated integrated congestion
 
In the past, the IETF has also investigated integrated congestion
 
control mechanisms that act on the traffic aggregate between two
 
control mechanisms that act on the traffic aggregate between two
hosts, i.e., a framework such as the Congestion Manager [RFC3124],
+
hosts, i.e., a framework such as the Congestion Manager [[RFC3124]],
  
 
where active sessions may share current congestion information in a
 
where active sessions may share current congestion information in a
Line 255: Line 236:
 
have currently failed to see deployment, but would otherwise simplify
 
have currently failed to see deployment, but would otherwise simplify
 
the design of congestion control mechanisms for UDP sessions, so that
 
the design of congestion control mechanisms for UDP sessions, so that
they fulfill the requirements in [RFC2914].
+
they fulfill the requirements in [[RFC2914]].
  
 
==== Bulk Transfer Applications ====
 
==== Bulk Transfer Applications ====
Line 262: Line 243:
 
UDP, i.e., applications that exchange more than a small number of UDP
 
UDP, i.e., applications that exchange more than a small number of UDP
 
datagrams per RTT, SHOULD implement TCP-Friendly Rate Control (TFRC)
 
datagrams per RTT, SHOULD implement TCP-Friendly Rate Control (TFRC)
[RFC5348], window-based, TCP-like congestion control, or otherwise
+
[[RFC5348]], window-based, TCP-like congestion control, or otherwise
 
ensure that the application complies with the congestion control
 
ensure that the application complies with the congestion control
 
principles.
 
principles.
Line 276: Line 257:
 
like windowing SHOULD implement a congestion control scheme that
 
like windowing SHOULD implement a congestion control scheme that
 
results in bandwidth use that competes fairly with TCP within an
 
results in bandwidth use that competes fairly with TCP within an
order of magnitude.  Section 2 of [RFC3551] suggests that
+
order of magnitude.  Section 2 of [[RFC3551]] suggests that
 
applications SHOULD monitor the packet loss rate to ensure that it is
 
applications SHOULD monitor the packet loss rate to ensure that it is
 
within acceptable parameters.  Packet loss is considered acceptable
 
within acceptable parameters.  Packet loss is considered acceptable
Line 309: Line 290:
 
behavior by not sending on average more than one UDP datagram per
 
behavior by not sending on average more than one UDP datagram per
 
round-trip time (RTT) to a destination.  Similar to the
 
round-trip time (RTT) to a destination.  Similar to the
recommendation in [RFC1536], an application SHOULD maintain an
+
recommendation in [[RFC1536]], an application SHOULD maintain an
 
estimate of the RTT for any destination with which it communicates.
 
estimate of the RTT for any destination with which it communicates.
Applications SHOULD implement the algorithm specified in [RFC2988] to
+
Applications SHOULD implement the algorithm specified in [[RFC2988]] to
 
compute a smoothed RTT (SRTT) estimate.  They SHOULD also detect
 
compute a smoothed RTT (SRTT) estimate.  They SHOULD also detect
 
packet loss and exponentially back-off their retransmission timer
 
packet loss and exponentially back-off their retransmission timer
Line 317: Line 298:
 
applications need to choose a sensible initial value for the RTT.
 
applications need to choose a sensible initial value for the RTT.
 
This value SHOULD generally be as conservative as possible for the
 
This value SHOULD generally be as conservative as possible for the
given application.  TCP uses an initial value of 3 seconds [RFC2988],
+
given application.  TCP uses an initial value of 3 seconds [[RFC2988]],
 
which is also RECOMMENDED as an initial value for UDP applications.
 
which is also RECOMMENDED as an initial value for UDP applications.
SIP [RFC3261] and GIST [GIST] use an initial value of 500 ms, and
+
SIP [[RFC3261]] and GIST [GIST] use an initial value of 500 ms, and
 
initial timeouts that are shorter than this are likely problematic in
 
initial timeouts that are shorter than this are likely problematic in
 
many cases.  It is also important to note that the initial timeout is
 
many cases.  It is also important to note that the initial timeout is
 
not the maximum possible timeout -- the RECOMMENDED algorithm in
 
not the maximum possible timeout -- the RECOMMENDED algorithm in
[RFC2988] yields timeout values after a series of losses that are
+
[[RFC2988]] yields timeout values after a series of losses that are
 
much longer than the initial value.
 
much longer than the initial value.
  
Line 331: Line 312:
 
accurate RTT estimate.  Such applications MAY use a predetermined
 
accurate RTT estimate.  Such applications MAY use a predetermined
 
transmission interval that is exponentially backed-off when packets
 
transmission interval that is exponentially backed-off when packets
are lost.  TCP uses an initial value of 3 seconds [RFC2988], which is
+
are lost.  TCP uses an initial value of 3 seconds [[RFC2988]], which is
 
also RECOMMENDED as an initial value for UDP applications.  SIP
 
also RECOMMENDED as an initial value for UDP applications.  SIP
[RFC3261] and GIST [GIST] use an interval of 500 ms, and shorter
+
[[RFC3261]] and GIST [GIST] use an interval of 500 ms, and shorter
 
values are likely problematic in many cases.  As in the previous
 
values are likely problematic in many cases.  As in the previous
 
case, note that the initial timeout is not the maximum possible
 
case, note that the initial timeout is not the maximum possible
Line 343: Line 324:
 
seconds, and SHOULD use an even less aggressive rate when possible.
 
seconds, and SHOULD use an even less aggressive rate when possible.
 
The 3-second interval was chosen based on TCP's retransmission
 
The 3-second interval was chosen based on TCP's retransmission
timeout when the RTT is unknown [RFC2988], and shorter values are
+
timeout when the RTT is unknown [[RFC2988]], and shorter values are
 
likely problematic in many cases.  Note that the sending rate in this
 
likely problematic in many cases.  Note that the sending rate in this
  
Line 472: Line 453:
 
Even with these being the case, some NATs and firewalls simply do not
 
Even with these being the case, some NATs and firewalls simply do not
 
implement the necessary reassembly functionality, and instead choose
 
implement the necessary reassembly functionality, and instead choose
to drop all fragments.  Finally, [RFC4963] documents other issues
+
to drop all fragments.  Finally, [[RFC4963]] documents other issues
 
specific to IPv4 fragmentation.
 
specific to IPv4 fragmentation.
  
Line 479: Line 460:
 
destination.  Consequently, an application SHOULD either use the path
 
destination.  Consequently, an application SHOULD either use the path
 
MTU information provided by the IP layer or implement path MTU
 
MTU information provided by the IP layer or implement path MTU
discovery itself [RFC1191][RFC1981][RFC4821] to determine whether the
+
discovery itself [[RFC1191]][[RFC1981]][[RFC4821]] to determine whether the
 
path to a destination will support its desired message size without
 
path to a destination will support its desired message size without
 
fragmentation.
 
fragmentation.
Line 488: Line 469:
 
is unknown, such applications SHOULD fall back to sending messages
 
is unknown, such applications SHOULD fall back to sending messages
 
that are shorter than the default effective MTU for sending (EMTU_S
 
that are shorter than the default effective MTU for sending (EMTU_S
in [RFC1122]).  For IPv4, EMTU_S is the smaller of 576 bytes and the
+
in [[RFC1122]]).  For IPv4, EMTU_S is the smaller of 576 bytes and the
first-hop MTU [RFC1122].  For IPv6, EMTU_S is 1280 bytes [RFC2460].
+
first-hop MTU [[RFC1122]].  For IPv6, EMTU_S is 1280 bytes [[RFC2460]].
 
The effective PMTU for a directly connected destination (with no
 
The effective PMTU for a directly connected destination (with no
 
routers on the path) is the configured interface MTU, which could be
 
routers on the path) is the configured interface MTU, which could be
Line 501: Line 482:
 
headers or IPv6 extension headers) as well as the length of the UDP
 
headers or IPv6 extension headers) as well as the length of the UDP
 
header (8 bytes) from the PMTU size.  This size, known as the MMS_S,
 
header (8 bytes) from the PMTU size.  This size, known as the MMS_S,
can be obtained from the TCP/IP stack [RFC1122].
+
can be obtained from the TCP/IP stack [[RFC1122]].
  
 
Applications that do not send messages that exceed the effective PMTU
 
Applications that do not send messages that exceed the effective PMTU
Line 539: Line 520:
 
Finally, it is important to note that delay spikes can be very large.
 
Finally, it is important to note that delay spikes can be very large.
 
This can cause reordered packets to arrive many seconds after they
 
This can cause reordered packets to arrive many seconds after they
were sent.  [RFC0793] defines the maximum delay a TCP segment should
+
were sent.  [[RFC0793]] defines the maximum delay a TCP segment should
 
experience -- the Maximum Segment Lifetime (MSL) -- as 2 minutes.  No
 
experience -- the Maximum Segment Lifetime (MSL) -- as 2 minutes.  No
  
Line 557: Line 538:
 
The UDP header includes an optional, 16-bit one's complement checksum
 
The UDP header includes an optional, 16-bit one's complement checksum
 
that provides an integrity check.  This results in a relatively weak
 
that provides an integrity check.  This results in a relatively weak
protection in terms of coding theory [RFC3819], and application
+
protection in terms of coding theory [[RFC3819]], and application
 
developers SHOULD implement additional checks where data integrity is
 
developers SHOULD implement additional checks where data integrity is
 
important, e.g., through a Cyclic Redundancy Check (CRC) included
 
important, e.g., through a Cyclic Redundancy Check (CRC) included
Line 572: Line 553:
 
was sent.  This check is not strong from a coding or cryptographic
 
was sent.  This check is not strong from a coding or cryptographic
 
perspective, and is not designed to detect physical-layer errors or
 
perspective, and is not designed to detect physical-layer errors or
malicious modification of the datagram [RFC3819].
+
malicious modification of the datagram [[RFC3819]].
  
Applications SHOULD enable UDP checksums, although [RFC0768] permits
+
Applications SHOULD enable UDP checksums, although [[RFC0768]] permits
 
the option to disable their use.  Applications that choose to disable
 
the option to disable their use.  Applications that choose to disable
 
UDP checksums when transmitting over IPv4 therefore MUST NOT make
 
UDP checksums when transmitting over IPv4 therefore MUST NOT make
Line 581: Line 562:
 
sent to a different destination or is otherwise corrupted.  The use
 
sent to a different destination or is otherwise corrupted.  The use
 
of the UDP checksum is REQUIRED when applications transmit UDP over
 
of the UDP checksum is REQUIRED when applications transmit UDP over
IPv6 [RFC2460].
+
IPv6 [[RFC2460]].
  
 
==== UDP-Lite ====
 
==== UDP-Lite ====
Line 589: Line 570:
 
using paths that include error-prone links.  Such applications can
 
using paths that include error-prone links.  Such applications can
 
tolerate payload corruption and MAY choose to use the Lightweight
 
tolerate payload corruption and MAY choose to use the Lightweight
User Datagram Protocol (UDP-Lite) [RFC3828] variant of UDP instead of
+
User Datagram Protocol (UDP-Lite) [[RFC3828]] variant of UDP instead of
  
 
basic UDP.  Applications that choose to use UDP-Lite instead of UDP
 
basic UDP.  Applications that choose to use UDP-Lite instead of UDP
Line 614: Line 595:
 
The sending application SHOULD select the minimum checksum coverage
 
The sending application SHOULD select the minimum checksum coverage
 
to include all sensitive protocol headers.  For example, applications
 
to include all sensitive protocol headers.  For example, applications
that use the Real-Time Protocol (RTP) [RFC3550] will likely want to
+
that use the Real-Time Protocol (RTP) [[RFC3550]] will likely want to
 
protect the RTP header against corruption.  Applications, where
 
protect the RTP header against corruption.  Applications, where
 
appropriate, MUST also introduce their own appropriate validity
 
appropriate, MUST also introduce their own appropriate validity
Line 622: Line 603:
 
The receiver must set a minimum coverage threshold for incoming
 
The receiver must set a minimum coverage threshold for incoming
 
packets that is not smaller than the smallest coverage used by the
 
packets that is not smaller than the smallest coverage used by the
sender [RFC3828].  The receiver SHOULD select a threshold that is
+
sender [[RFC3828]].  The receiver SHOULD select a threshold that is
 
sufficiently large to block packets with an inappropriately short
 
sufficiently large to block packets with an inappropriately short
 
coverage field.  This may be a fixed value, or may be negotiated by
 
coverage field.  This may be a fixed value, or may be negotiated by
Line 691: Line 672:
 
intervals when possible.  No common timeout has been specified for
 
intervals when possible.  No common timeout has been specified for
 
per-flow UDP state for arbitrary middleboxes.  NATs require a state
 
per-flow UDP state for arbitrary middleboxes.  NATs require a state
timeout of 2 minutes or longer [RFC4787].  However, empirical
+
timeout of 2 minutes or longer [[RFC4787]].  However, empirical
 
evidence suggests that a significant fraction of currently deployed
 
evidence suggests that a significant fraction of currently deployed
 
middleboxes unfortunately use shorter timeouts.  The timeout of 15
 
middleboxes unfortunately use shorter timeouts.  The timeout of 15
Line 700: Line 681:
 
intervals, or whether it offers mechanisms to explicitly control
 
intervals, or whether it offers mechanisms to explicitly control
 
middlebox state timeout durations, for example, using Middlebox
 
middlebox state timeout durations, for example, using Middlebox
Communications (MIDCOM) [RFC3303], Next Steps in Signaling (NSIS)
+
Communications (MIDCOM) [[RFC3303]], Next Steps in Signaling (NSIS)
 
[NSLP], or Universal Plug and Play (UPnP) [UPnP].  It is RECOMMENDED
 
[NSLP], or Universal Plug and Play (UPnP) [UPnP].  It is RECOMMENDED
 
that applications apply slight random variations ("jitter") to the
 
that applications apply slight random variations ("jitter") to the
Line 745: Line 726:
 
Although the sockets API was developed for UNIX in the early 1980s, a
 
Although the sockets API was developed for UNIX in the early 1980s, a
 
wide variety of non-UNIX operating systems also implement this.  The
 
wide variety of non-UNIX operating systems also implement this.  The
sockets API supports both IPv4 and IPv6 [RFC3493].  The UDP sockets
+
sockets API supports both IPv4 and IPv6 [[RFC3493]].  The UDP sockets
 
API differs from that for TCP in several key ways.  Because
 
API differs from that for TCP in several key ways.  Because
 
application programmers are typically more familiar with the TCP
 
application programmers are typically more familiar with the TCP
Line 765: Line 746:
 
IP interface, the application SHOULD send any UDP responses with an
 
IP interface, the application SHOULD send any UDP responses with an
 
IP source address that matches the IP destination address of the UDP
 
IP source address that matches the IP destination address of the UDP
datagram that carried the request (see [RFC1122], Section 4.1.3.5).
+
datagram that carried the request (see [[RFC1122]], Section 4.1.3.5).
 
Many middleboxes expect this transmission behavior and drop replies
 
Many middleboxes expect this transmission behavior and drop replies
 
that are sent from a different IP address, as explained in
 
that are sent from a different IP address, as explained in
Line 787: Line 768:
 
checksum or the IP Timestamp option.  On some stacks, a bound socket
 
checksum or the IP Timestamp option.  On some stacks, a bound socket
 
also allows an application to be notified when ICMP error messages
 
also allows an application to be notified when ICMP error messages
are received for its transmissions [RFC1122].
+
are received for its transmissions [[RFC1122]].
  
 
UDP provides no flow-control.  This is another reason why UDP-based
 
UDP provides no flow-control.  This is another reason why UDP-based
Line 813: Line 794:
  
 
The Internet can provide service differentiation to applications
 
The Internet can provide service differentiation to applications
based on IP-layer packet markings [RFC2475].  This facility can be
+
based on IP-layer packet markings [[RFC2475]].  This facility can be
 
used for UDP traffic.  Different operating systems provide different
 
used for UDP traffic.  Different operating systems provide different
 
interfaces for marking packets to applications.  Differentiated
 
interfaces for marking packets to applications.  Differentiated
Line 823: Line 804:
  
 
Applications can utilize information about ICMP error messages that
 
Applications can utilize information about ICMP error messages that
the UDP layer passes up for a variety of purposes [RFC1122].
+
the UDP layer passes up for a variety of purposes [[RFC1122]].
 
Applications SHOULD validate that the information in the ICMP message
 
Applications SHOULD validate that the information in the ICMP message
 
payload, e.g., a reported error condition, corresponds to a UDP
 
payload, e.g., a reported error condition, corresponds to a UDP
Line 853: Line 834:
 
it can be spoofed.
 
it can be spoofed.
  
One option of securing UDP communications is with IPsec [RFC4301],
+
One option of securing UDP communications is with IPsec [[RFC4301]],
 
which can provide authentication for flows of IP packets through the
 
which can provide authentication for flows of IP packets through the
Authentication Header (AH) [RFC4302] and encryption and/or
+
Authentication Header (AH) [[RFC4302]] and encryption and/or
 
authentication through the Encapsulating Security Payload (ESP)
 
authentication through the Encapsulating Security Payload (ESP)
[RFC4303].  Applications use the Internet Key Exchange (IKE)
+
[[RFC4303]].  Applications use the Internet Key Exchange (IKE)
[RFC4306] to configure IPsec for their sessions.  Depending on how
+
[[RFC4306]] to configure IPsec for their sessions.  Depending on how
 
IPsec is configured for a flow, it can authenticate or encrypt the
 
IPsec is configured for a flow, it can authenticate or encrypt the
 
UDP headers as well as UDP payloads.  If an application only requires
 
UDP headers as well as UDP payloads.  If an application only requires
Line 870: Line 851:
 
easily configure it for their flows.  A second option of securing UDP
 
easily configure it for their flows.  A second option of securing UDP
 
communications is through Datagram Transport Layer Security (DTLS)
 
communications is through Datagram Transport Layer Security (DTLS)
[RFC4347].  DTLS provides communication privacy by encrypting UDP
+
[[RFC4347]].  DTLS provides communication privacy by encrypting UDP
 
payloads.  It does not protect the UDP headers.  Applications can
 
payloads.  It does not protect the UDP headers.  Applications can
 
implement DTLS without relying on support from the operating system.
 
implement DTLS without relying on support from the operating system.
  
 
Many other options for authenticating or encrypting UDP payloads
 
Many other options for authenticating or encrypting UDP payloads
exist.  For example, the GSS-API security framework [RFC2743] or
+
exist.  For example, the GSS-API security framework [[RFC2743]] or
Cryptographic Message Syntax (CMS) [RFC3852] could be used to protect
+
Cryptographic Message Syntax (CMS) [[RFC3852]] could be used to protect
UDP payloads.  The IETF standard for securing RTP [RFC3550]
+
UDP payloads.  The IETF standard for securing RTP [[RFC3550]]
 
communication sessions over UDP is the Secure Real-time Transport
 
communication sessions over UDP is the Secure Real-time Transport
Protocol (SRTP) [RFC3711].  In some applications, a better solution
+
Protocol (SRTP) [[RFC3711]].  In some applications, a better solution
 
is to protect larger stand-alone objects, such as files or messages,
 
is to protect larger stand-alone objects, such as files or messages,
 
instead of individual UDP payloads.  In these situations, CMS
 
instead of individual UDP payloads.  In these situations, CMS
[RFC3852], S/MIME [RFC3851] or OpenPGP [RFC4880] could be used.  In
+
[[RFC3852]], S/MIME [[RFC3851]] or OpenPGP [[RFC4880]] could be used.  In
 
addition, there are many non-IETF protocols in this area.
 
addition, there are many non-IETF protocols in this area.
  
Line 890: Line 871:
 
DTLS or IPsec, rather than inventing their own.
 
DTLS or IPsec, rather than inventing their own.
  
The Generalized TTL Security Mechanism (GTSM) [RFC5082] may be used
+
The Generalized TTL Security Mechanism (GTSM) [[RFC5082]] may be used
 
with UDP applications (especially when the intended endpoint is on
 
with UDP applications (especially when the intended endpoint is on
 
the same link as the sender).  This is a lightweight mechanism that
 
the same link as the sender).  This is a lightweight mechanism that
 
allows a receiver to filter unwanted packets.
 
allows a receiver to filter unwanted packets.
  
In terms of congestion control, [RFC2309] and [RFC2914] discuss the
+
In terms of congestion control, [[RFC2309]] and [[RFC2914]] discuss the
 
dangers of congestion-unresponsive flows to the Internet.  This
 
dangers of congestion-unresponsive flows to the Internet.  This
 
document provides guidelines to designers of UDP-based applications
 
document provides guidelines to designers of UDP-based applications
Line 974: Line 955:
 
=== Normative References ===
 
=== Normative References ===
  
[RFC0768]    Postel, J., "User Datagram Protocol", STD 6, RFC 768,
+
[[RFC0768]]    Postel, J., "User Datagram Protocol", [[STD6|STD 6]], [[RFC768|RFC 768]],
 
               August 1980.
 
               August 1980.
  
[RFC0793]    Postel, J., "Transmission Control Protocol", STD 7,
+
[[RFC0793]]    Postel, J., "Transmission Control Protocol", [[STD7|STD 7]],
               RFC 793, September 1981.
+
               [[RFC793|RFC 793]], September 1981.
  
[RFC1122]    Braden, R., "Requirements for Internet Hosts -
+
[[RFC1122]]    Braden, R., "Requirements for Internet Hosts -
               Communication Layers", STD 3, RFC 1122, October 1989.
+
               Communication Layers", [[STD3|STD 3]], [[RFC1122|RFC 1122]], October 1989.
  
[RFC1191]    Mogul, J. and S. Deering, "Path MTU discovery",
+
[[RFC1191]]    Mogul, J. and S. Deering, "Path MTU discovery",
               RFC 1191, November 1990.
+
               [[RFC1191|RFC 1191]], November 1990.
  
[RFC1981]    McCann, J., Deering, S., and J. Mogul, "Path MTU
+
[[RFC1981]]    McCann, J., Deering, S., and J. Mogul, "Path MTU
               Discovery for IP version 6", RFC 1981, August 1996.
+
               Discovery for IP version 6", [[RFC1981|RFC 1981]], August 1996.
  
[RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
+
[[RFC2119]]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.
+
               Requirement Levels", [[BCP14|BCP 14]], [[RFC2119|RFC 2119]], March 1997.
  
[RFC2460]    Deering, S. and R. Hinden, "Internet Protocol, Version
+
[[RFC2460]]    Deering, S. and R. Hinden, "Internet Protocol, Version
               6 (IPv6) Specification", RFC 2460, December 1998.
+
               6 (IPv6) Specification", [[RFC2460|RFC 2460]], December 1998.
  
[RFC2914]    Floyd, S., "Congestion Control Principles", BCP 41,
+
[[RFC2914]]    Floyd, S., "Congestion Control Principles", [[BCP41|BCP 41]],
               RFC 2914, September 2000.
+
               [[RFC2914|RFC 2914]], September 2000.
  
[RFC2988]    Paxson, V. and M. Allman, "Computing TCP's
+
[[RFC2988]]    Paxson, V. and M. Allman, "Computing TCP's
               Retransmission Timer", RFC 2988, November 2000.
+
               Retransmission Timer", [[RFC2988|RFC 2988]], November 2000.
  
[RFC3828]    Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E.,
+
[[RFC3828]]    Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E.,
 
               and G. Fairhurst, "The Lightweight User Datagram
 
               and G. Fairhurst, "The Lightweight User Datagram
               Protocol (UDP-Lite)", RFC 3828, July 2004.
+
               Protocol (UDP-Lite)", [[RFC3828|RFC 3828]], July 2004.
  
[RFC4787]    Audet, F. and C. Jennings, "Network Address Translation
+
[[RFC4787]]    Audet, F. and C. Jennings, "Network Address Translation
 
               (NAT) Behavioral Requirements for Unicast UDP",
 
               (NAT) Behavioral Requirements for Unicast UDP",
               BCP 127, RFC 4787, January 2007.
+
               [[BCP127|BCP 127]], [[RFC4787|RFC 4787]], January 2007.
  
[RFC4821]    Mathis, M. and J. Heffner, "Packetization Layer Path
+
[[RFC4821]]    Mathis, M. and J. Heffner, "Packetization Layer Path
               MTU Discovery", RFC 4821, March 2007.
+
               MTU Discovery", [[RFC4821|RFC 4821]], March 2007.
  
[RFC5348]    Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
+
[[RFC5348]]    Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 
               Friendly Rate Control (TFRC): Protocol Specification",
 
               Friendly Rate Control (TFRC): Protocol Specification",
               RFC 5348, September 2008.
+
               [[RFC5348|RFC 5348]], September 2008.
  
 
=== Informative References ===
 
=== Informative References ===
Line 1,049: Line 1,030:
 
               December 2001.
 
               December 2001.
  
[RFC0896]    Nagle, J., "Congestion control in IP/TCP
+
[[RFC0896]]    Nagle, J., "Congestion control in IP/TCP
               internetworks", RFC 896, January 1984.
+
               internetworks", [[RFC896|RFC 896]], January 1984.
  
[RFC0919]    Mogul, J., "Broadcasting Internet Datagrams", STD 5,
+
[[RFC0919]]    Mogul, J., "Broadcasting Internet Datagrams", [[STD5|STD 5]],
               RFC 919, October 1984.
+
               [[RFC919|RFC 919]], October 1984.
  
[RFC1112]    Deering, S., "Host extensions for IP multicasting",
+
[[RFC1112]]    Deering, S., "Host extensions for IP multicasting",
               STD 5, RFC 1112, August 1989.
+
               [[STD5|STD 5]], [[RFC1112|RFC 1112]], August 1989.
  
[RFC1536]    Kumar, A., Postel, J., Neuman, C., Danzig, P., and S.
+
[[RFC1536]]    Kumar, A., Postel, J., Neuman, C., Danzig, P., and S.
 
               Miller, "Common DNS Implementation Errors and Suggested
 
               Miller, "Common DNS Implementation Errors and Suggested
               Fixes", RFC 1536, October 1993.
+
               Fixes", [[RFC1536|RFC 1536]], October 1993.
  
[RFC1546]    Partridge, C., Mendez, T., and W. Milliken, "Host
+
[[RFC1546]]    Partridge, C., Mendez, T., and W. Milliken, "Host
               Anycasting Service", RFC 1546, November 1993.
+
               Anycasting Service", [[RFC1546|RFC 1546]], November 1993.
  
[RFC2309]    Braden, B., Clark, D., Crowcroft, J., Davie, B.,
+
[[RFC2309]]    Braden, B., Clark, D., Crowcroft, J., Davie, B.,
 
               Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
 
               Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
 
               Minshall, G., Partridge, C., Peterson, L.,
 
               Minshall, G., Partridge, C., Peterson, L.,
 
               Ramakrishnan, K., Shenker, S., Wroclawski, J., and L.
 
               Ramakrishnan, K., Shenker, S., Wroclawski, J., and L.
 
               Zhang, "Recommendations on Queue Management and
 
               Zhang, "Recommendations on Queue Management and
               Congestion Avoidance in the Internet", RFC 2309,
+
               Congestion Avoidance in the Internet", [[RFC2309|RFC 2309]],
 
               April 1998.
 
               April 1998.
  
[RFC2475]    Blake, S., Black, D., Carlson, M., Davies, E., Wang,
+
[[RFC2475]]    Blake, S., Black, D., Carlson, M., Davies, E., Wang,
 
               Z., and W. Weiss, "An Architecture for Differentiated
 
               Z., and W. Weiss, "An Architecture for Differentiated
               Services", RFC 2475, December 1998.
+
               Services", [[RFC2475|RFC 2475]], December 1998.
  
[RFC2675]    Borman, D., Deering, S., and R. Hinden, "IPv6
+
[[RFC2675]]    Borman, D., Deering, S., and R. Hinden, "IPv6
               Jumbograms", RFC 2675, August 1999.
+
               Jumbograms", [[RFC2675|RFC 2675]], August 1999.
  
[RFC2743]    Linn, J., "Generic Security Service Application Program
+
[[RFC2743]]    Linn, J., "Generic Security Service Application Program
               Interface Version 2, Update 1", RFC 2743, January 2000.
+
               Interface Version 2, Update 1", [[RFC2743|RFC 2743]], January 2000.
  
[RFC3048]    Whetten, B., Vicisano, L., Kermode, R., Handley, M.,
+
[[RFC3048]]    Whetten, B., Vicisano, L., Kermode, R., Handley, M.,
 
               Floyd, S., and M. Luby, "Reliable Multicast Transport
 
               Floyd, S., and M. Luby, "Reliable Multicast Transport
 
               Building Blocks for One-to-Many Bulk-Data Transfer",
 
               Building Blocks for One-to-Many Bulk-Data Transfer",
               RFC 3048, January 2001.
+
               [[RFC3048|RFC 3048]], January 2001.
  
[RFC3124]    Balakrishnan, H. and S. Seshan, "The Congestion
+
[[RFC3124]]    Balakrishnan, H. and S. Seshan, "The Congestion
               Manager", RFC 3124, June 2001.
+
               Manager", [[RFC3124|RFC 3124]], June 2001.
  
[RFC3261]    Rosenberg, J., Schulzrinne, H., Camarillo, G.,
+
[[RFC3261]]    Rosenberg, J., Schulzrinne, H., Camarillo, G.,
 
               Johnston, A., Peterson, J., Sparks, R., Handley, M.,
 
               Johnston, A., Peterson, J., Sparks, R., Handley, M.,
 
               and E. Schooler, "SIP: Session Initiation Protocol",
 
               and E. Schooler, "SIP: Session Initiation Protocol",
               RFC 3261, June 2002.
+
               [[RFC3261|RFC 3261]], June 2002.
  
[RFC3303]    Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A.,
+
[[RFC3303]]    Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A.,
 
               and A. Rayhan, "Middlebox communication architecture
 
               and A. Rayhan, "Middlebox communication architecture
               and framework", RFC 3303, August 2002.
+
               and framework", [[RFC3303|RFC 3303]], August 2002.
  
[RFC3493]    Gilligan, R., Thomson, S., Bound, J., McCann, J., and
+
[[RFC3493]]    Gilligan, R., Thomson, S., Bound, J., McCann, J., and
 
               W. Stevens, "Basic Socket Interface Extensions for
 
               W. Stevens, "Basic Socket Interface Extensions for
               IPv6", RFC 3493, February 2003.
+
               IPv6", [[RFC3493|RFC 3493]], February 2003.
  
[RFC3550]    Schulzrinne, H., Casner, S., Frederick, R., and V.
+
[[RFC3550]]    Schulzrinne, H., Casner, S., Frederick, R., and V.
 
               Jacobson, "RTP: A Transport Protocol for Real-Time
 
               Jacobson, "RTP: A Transport Protocol for Real-Time
               Applications", STD 64, RFC 3550, July 2003.
+
               Applications", [[STD64|STD 64]], [[RFC3550|RFC 3550]], July 2003.
  
[RFC3551]    Schulzrinne, H. and S. Casner, "RTP Profile for Audio
+
[[RFC3551]]    Schulzrinne, H. and S. Casner, "RTP Profile for Audio
               and Video Conferences with Minimal Control", STD 65,
+
               and Video Conferences with Minimal Control", [[STD65|STD 65]],
               RFC 3551, July 2003.
+
               [[RFC3551|RFC 3551]], July 2003.
  
[RFC3711]    Baugher, M., McGrew, D., Naslund, M., Carrara, E., and
+
[[RFC3711]]    Baugher, M., McGrew, D., Naslund, M., Carrara, E., and
 
               K. Norrman, "The Secure Real-time Transport Protocol
 
               K. Norrman, "The Secure Real-time Transport Protocol
               (SRTP)", RFC 3711, March 2004.
+
               (SRTP)", [[RFC3711|RFC 3711]], March 2004.
  
[RFC3738]    Luby, M. and V. Goyal, "Wave and Equation Based Rate
+
[[RFC3738]]    Luby, M. and V. Goyal, "Wave and Equation Based Rate
               Control (WEBRC) Building Block", RFC 3738, April 2004.
+
               Control (WEBRC) Building Block", [[RFC3738|RFC 3738]], April 2004.
  
[RFC3758]    Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
+
[[RFC3758]]    Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 
               Conrad, "Stream Control Transmission Protocol (SCTP)
 
               Conrad, "Stream Control Transmission Protocol (SCTP)
               Partial Reliability Extension", RFC 3758, May 2004.
+
               Partial Reliability Extension", [[RFC3758|RFC 3758]], May 2004.
  
[RFC3819]    Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
+
[[RFC3819]]    Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 
               Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and
 
               Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and
 
               L. Wood, "Advice for Internet Subnetwork Designers",
 
               L. Wood, "Advice for Internet Subnetwork Designers",
               BCP 89, RFC 3819, July 2004.
+
               [[BCP89|BCP 89]], [[RFC3819|RFC 3819]], July 2004.
  
[RFC3851]    Ramsdell, B., "Secure/Multipurpose Internet Mail
+
[[RFC3851]]    Ramsdell, B., "Secure/Multipurpose Internet Mail
 
               Extensions (S/MIME) Version 3.1 Message Specification",
 
               Extensions (S/MIME) Version 3.1 Message Specification",
               RFC 3851, July 2004.
+
               [[RFC3851|RFC 3851]], July 2004.
  
[RFC3852]    Housley, R., "Cryptographic Message Syntax (CMS)",
+
[[RFC3852]]    Housley, R., "Cryptographic Message Syntax (CMS)",
               RFC 3852, July 2004.
+
               [[RFC3852|RFC 3852]], July 2004.
  
[RFC4301]    Kent, S. and K. Seo, "Security Architecture for the
+
[[RFC4301]]    Kent, S. and K. Seo, "Security Architecture for the
               Internet Protocol", RFC 4301, December 2005.
+
               Internet Protocol", [[RFC4301|RFC 4301]], December 2005.
  
[RFC4302]    Kent, S., "IP Authentication Header", RFC 4302,
+
[[RFC4302]]    Kent, S., "IP Authentication Header", [[RFC4302|RFC 4302]],
 
               December 2005.
 
               December 2005.
  
[RFC4303]    Kent, S., "IP Encapsulating Security Payload (ESP)",
+
[[RFC4303]]    Kent, S., "IP Encapsulating Security Payload (ESP)",
               RFC 4303, December 2005.
+
               [[RFC4303|RFC 4303]], December 2005.
  
[RFC4306]    Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
+
[[RFC4306]]    Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
               RFC 4306, December 2005.
+
               [[RFC4306|RFC 4306]], December 2005.
  
[RFC4340]    Kohler, E., Handley, M., and S. Floyd, "Datagram
+
[[RFC4340]]    Kohler, E., Handley, M., and S. Floyd, "Datagram
               Congestion Control Protocol (DCCP)", RFC 4340,
+
               Congestion Control Protocol (DCCP)", [[RFC4340|RFC 4340]],
 
               March 2006.
 
               March 2006.
  
[RFC4341]    Floyd, S. and E. Kohler, "Profile for Datagram
+
[[RFC4341]]    Floyd, S. and E. Kohler, "Profile for Datagram
 
               Congestion Control Protocol (DCCP) Congestion Control
 
               Congestion Control Protocol (DCCP) Congestion Control
               ID 2: TCP-like Congestion Control", RFC 4341,
+
               ID 2: TCP-like Congestion Control", [[RFC4341|RFC 4341]],
 
               March 2006.
 
               March 2006.
  
[RFC4342]    Floyd, S., Kohler, E., and J. Padhye, "Profile for
+
[[RFC4342]]    Floyd, S., Kohler, E., and J. Padhye, "Profile for
 
               Datagram Congestion Control Protocol (DCCP) Congestion
 
               Datagram Congestion Control Protocol (DCCP) Congestion
 
               Control ID 3: TCP-Friendly Rate Control (TFRC)",
 
               Control ID 3: TCP-Friendly Rate Control (TFRC)",
               RFC 4342, March 2006.
+
               [[RFC4342|RFC 4342]], March 2006.
  
[RFC4347]    Rescorla, E. and N. Modadugu, "Datagram Transport Layer
+
[[RFC4347]]    Rescorla, E. and N. Modadugu, "Datagram Transport Layer
               Security", RFC 4347, April 2006.
+
               Security", [[RFC4347|RFC 4347]], April 2006.
  
[RFC4654]    Widmer, J. and M. Handley, "TCP-Friendly Multicast
+
[[RFC4654]]    Widmer, J. and M. Handley, "TCP-Friendly Multicast
 
               Congestion Control (TFMCC): Protocol Specification",
 
               Congestion Control (TFMCC): Protocol Specification",
               RFC 4654, August 2006.
+
               [[RFC4654|RFC 4654]], August 2006.
  
[RFC4880]    Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and
+
[[RFC4880]]    Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and
               R. Thayer, "OpenPGP Message Format", RFC 4880,
+
               R. Thayer, "OpenPGP Message Format", [[RFC4880|RFC 4880]],
 
               November 2007.
 
               November 2007.
  
[RFC4960]    Stewart, R., "Stream Control Transmission Protocol",
+
[[RFC4960]]    Stewart, R., "Stream Control Transmission Protocol",
               RFC 4960, September 2007.
+
               [[RFC4960|RFC 4960]], September 2007.
  
[RFC4963]    Heffner, J., Mathis, M., and B. Chandler, "IPv4
+
[[RFC4963]]    Heffner, J., Mathis, M., and B. Chandler, "IPv4
               Reassembly Errors at High Data Rates", RFC 4963,
+
               Reassembly Errors at High Data Rates", [[RFC4963|RFC 4963]],
 
               July 2007.
 
               July 2007.
  
[RFC4987]    Eddy, W., "TCP SYN Flooding Attacks and Common
+
[[RFC4987]]    Eddy, W., "TCP SYN Flooding Attacks and Common
               Mitigations", RFC 4987, August 2007.
+
               Mitigations", [[RFC4987|RFC 4987]], August 2007.
  
[RFC5082]    Gill, V., Heasley, J., Meyer, D., Savola, P., and C.
+
[[RFC5082]]    Gill, V., Heasley, J., Meyer, D., Savola, P., and C.
 
               Pignataro, "The Generalized TTL Security Mechanism
 
               Pignataro, "The Generalized TTL Security Mechanism
               (GTSM)", RFC 5082, October 2007.
+
               (GTSM)", [[RFC5082|RFC 5082]], October 2007.
  
 
[STEVENS]    Stevens, W., Fenner, B., and A. Rudoff, "UNIX Network
 
[STEVENS]    Stevens, W., Fenner, B., and A. Rudoff, "UNIX Network
Line 1,216: Line 1,197:
  
 
URI:  http://www.erg.abdn.ac.uk/
 
URI:  http://www.erg.abdn.ac.uk/
 +
 +
[[Category:Best Current Practice]]

Latest revision as of 17:58, 11 October 2020

Network Working Group L. Eggert Request for Comments: 5405 Nokia BCP: 145 G. Fairhurst Category: Best Current Practice University of Aberdeen

                                                       November 2008
     Unicast UDP Usage Guidelines for Application Designers

Status of This Memo

This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements. Distribution of this memo is unlimited.

Copyright Notice

Copyright (c) 2008 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Abstract

The User Datagram Protocol (UDP) provides a minimal message-passing transport that has no inherent congestion control mechanisms. Because congestion control is critical to the stable operation of the Internet, applications and upper-layer protocols that choose to use UDP as an Internet transport must employ mechanisms to prevent congestion collapse and to establish some degree of fairness with concurrent traffic. This document provides guidelines on the use of UDP for the designers of unicast applications and upper-layer protocols. Congestion control guidelines are a primary focus, but the document also provides guidance on other topics, including message sizes, reliability, checksums, and middlebox traversal.

Introduction

The User Datagram Protocol (UDP) RFC0768 provides a minimal, unreliable, best-effort, message-passing transport to applications and upper-layer protocols (both simply called "applications" in the remainder of this document). Compared to other transport protocols, UDP and its UDP-Lite variant RFC3828 are unique in that they do not establish end-to-end connections between communicating end systems. UDP communication consequently does not incur connection establishment and teardown overheads, and there is minimal associated end system state. Because of these characteristics, UDP can offer a very efficient communication transport to some applications.

A second unique characteristic of UDP is that it provides no inherent congestion control mechanisms. On many platforms, applications can send UDP datagrams at the line rate of the link interface, which is often much greater than the available path capacity, and doing so contributes to congestion along the path. RFC2914 describes the best current practice for congestion control in the Internet. It identifies two major reasons why congestion control mechanisms are critical for the stable operation of the Internet:

1. The prevention of congestion collapse, i.e., a state where an

   increase in network load results in a decrease in useful work
   done by the network.

2. The establishment of a degree of fairness, i.e., allowing

   multiple flows to share the capacity of a path reasonably
   equitably.

Because UDP itself provides no congestion control mechanisms, it is up to the applications that use UDP for Internet communication to employ suitable mechanisms to prevent congestion collapse and establish a degree of fairness. RFC2309 discusses the dangers of congestion-unresponsive flows and states that "all UDP-based streaming applications should incorporate effective congestion avoidance mechanisms". This is an important requirement, even for applications that do not use UDP for streaming. In addition, congestion-controlled transmission is of benefit to an application itself, because it can reduce self-induced packet loss, minimize retransmissions, and hence reduce delays. Congestion control is essential even at relatively slow transmission rates. For example, an application that generates five 1500-byte UDP datagrams in one second can already exceed the capacity of a 56 Kb/s path. For applications that can operate at higher, potentially unbounded data rates, congestion control becomes vital to prevent congestion collapse and establish some degree of fairness. Section 3 describes a number of simple guidelines for the designers of such applications.

A UDP datagram is carried in a single IP packet and is hence limited to a maximum payload of 65,507 bytes for IPv4 and 65,527 bytes for IPv6. The transmission of large IP packets usually requires IP fragmentation. Fragmentation decreases communication reliability and efficiency and should be avoided. IPv6 allows the option of transmitting large packets ("jumbograms") without fragmentation when all link layers along the path support this RFC2675. Some of the guidelines in Section 3 describe how applications should determine appropriate message sizes. Other sections of this document provide guidance on reliability, checksums, and middlebox traversal.

This document provides guidelines and recommendations. Although most unicast UDP applications are expected to follow these guidelines, there do exist valid reasons why a specific application may decide not to follow a given guideline. In such cases, it is RECOMMENDED that the application designers document the rationale for their design choice in the technical specification of their application or protocol.

This document provides guidelines to designers of applications that use UDP for unicast transmission, which is the most common case. Specialized classes of applications use UDP for IP multicast RFC1112, broadcast RFC0919, or anycast RFC1546 transmissions. The design of such specialized applications requires expertise that goes beyond the simple, unicast-specific guidelines given in this document. Multicast and broadcast senders may transmit to multiple receivers across potentially very heterogeneous paths at the same time, which significantly complicates congestion control, flow control, and reliability mechanisms. The IETF has defined a reliable multicast framework RFC3048 and several building blocks to aid the designers of multicast applications, such as RFC3738 or RFC4654. Anycast senders must be aware that successive messages sent to the same anycast IP address may be delivered to different anycast nodes, i.e., arrive at different locations in the topology. It is not intended that the guidelines in this document apply to multicast, broadcast, or anycast applications that use UDP.

Finally, although this document specifically refers to unicast applications that use UDP, the spirit of some of its guidelines also applies to other message-passing applications and protocols (specifically on the topics of congestion control, message sizes, and reliability). Examples include signaling or control applications that choose to run directly over IP by registering their own IP protocol number with IANA. This document may provide useful background reading to the designers of such applications and protocols.

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 RFC2119.

UDP Usage Guidelines

Internet paths can have widely varying characteristics, including transmission delays, available bandwidths, congestion levels, reordering probabilities, supported message sizes, or loss rates. Furthermore, the same Internet path can have very different conditions over time. Consequently, applications that may be used on the Internet MUST NOT make assumptions about specific path characteristics. They MUST instead use mechanisms that let them operate safely under very different path conditions. Typically, this requires conservatively probing the current conditions of the Internet path they communicate over to establish a transmission behavior that it can sustain and that is reasonably fair to other traffic sharing the path.

These mechanisms are difficult to implement correctly. For most applications, the use of one of the existing IETF transport protocols is the simplest method of acquiring the required mechanisms. Consequently, the RECOMMENDED alternative to the UDP usage described in the remainder of this section is the use of an IETF transport protocol such as TCP RFC0793, Stream Control Transmission Protocol (SCTP) RFC4960, and SCTP Partial Reliability Extension (SCTP-PR) RFC3758, or Datagram Congestion Control Protocol (DCCP) RFC4340 with its different congestion control types RFC4341RFC4342[CCID4].

If used correctly, these more fully-featured transport protocols are not as "heavyweight" as often claimed. For example, the TCP algorithms have been continuously improved over decades, and have reached a level of efficiency and correctness that custom application-layer mechanisms will struggle to easily duplicate. In addition, many TCP implementations allow connections to be tuned by an application to its purposes. For example, TCP's "Nagle" algorithm RFC0896 can be disabled, improving communication latency at the expense of more frequent -- but still congestion-controlled -- packet transmissions. Another example is the TCP SYN cookie mechanism RFC4987, which is available on many platforms. TCP with SYN cookies does not require a server to maintain per-connection state until the connection is established. TCP also requires the end that closes a connection to maintain the TIME-WAIT state that prevents delayed segments from one connection instance from interfering with a

later one. Applications that are aware of and designed for this behavior can shift maintenance of the TIME-WAIT state to conserve resources by controlling which end closes a TCP connection [FABER]. Finally, TCP's built-in capacity-probing and awareness of the maximum transmission unit supported by the path (PMTU) results in efficient data transmission that quickly compensates for the initial connection setup delay, in the case of transfers that exchange more than a few segments.

Congestion Control Guidelines

If an application or upper-layer protocol chooses not to use a congestion-controlled transport protocol, it SHOULD control the rate at which it sends UDP datagrams to a destination host, in order to fulfill the requirements of RFC2914. It is important to stress that an application SHOULD perform congestion control over all UDP traffic it sends to a destination, independently from how it generates this traffic. For example, an application that forks multiple worker processes or otherwise uses multiple sockets to generate UDP datagrams SHOULD perform congestion control over the aggregate traffic.

Several approaches to perform congestion control are discussed in the remainder of this section. Not all approaches discussed below are appropriate for all UDP-transmitting applications. Section 3.1.1 discusses congestion control options for applications that perform bulk transfers over UDP. Such applications can employ schemes that sample the path over several subsequent RTTs during which data is exchanged, in order to determine a sending rate that the path at its current load can support. Other applications only exchange a few UDP datagrams with a destination. Section 3.1.2 discusses congestion control options for such "low data-volume" applications. Because they typically do not transmit enough data to iteratively sample the path to determine a safe sending rate, they need to employ different kinds of congestion control mechanisms. Section 3.1.3 discusses congestion control considerations when UDP is used as a tunneling protocol.

It is important to note that congestion control should not be viewed as an add-on to a finished application. Many of the mechanisms discussed in the guidelines below require application support to operate correctly. Application designers need to consider congestion control throughout the design of their application, similar to how they consider security aspects throughout the design process.

In the past, the IETF has also investigated integrated congestion control mechanisms that act on the traffic aggregate between two hosts, i.e., a framework such as the Congestion Manager RFC3124,

where active sessions may share current congestion information in a way that is independent of the transport protocol. Such mechanisms have currently failed to see deployment, but would otherwise simplify the design of congestion control mechanisms for UDP sessions, so that they fulfill the requirements in RFC2914.

Bulk Transfer Applications

Applications that perform bulk transmission of data to a peer over UDP, i.e., applications that exchange more than a small number of UDP datagrams per RTT, SHOULD implement TCP-Friendly Rate Control (TFRC) RFC5348, window-based, TCP-like congestion control, or otherwise ensure that the application complies with the congestion control principles.

TFRC has been designed to provide both congestion control and fairness in a way that is compatible with the IETF's other transport protocols. If an application implements TFRC, it need not follow the remaining guidelines in Section 3.1.1, because TFRC already addresses them, but SHOULD still follow the remaining guidelines in the subsequent subsections of Section 3.

Bulk transfer applications that choose not to implement TFRC or TCP- like windowing SHOULD implement a congestion control scheme that results in bandwidth use that competes fairly with TCP within an order of magnitude. Section 2 of RFC3551 suggests that applications SHOULD monitor the packet loss rate to ensure that it is within acceptable parameters. Packet loss is considered acceptable if a TCP flow across the same network path under the same network conditions would achieve an average throughput, measured on a reasonable timescale, that is not less than that of the UDP flow. The comparison to TCP cannot be specified exactly, but is intended as an "order-of-magnitude" comparison in timescale and throughput.

Finally, some bulk transfer applications may choose not to implement any congestion control mechanism and instead rely on transmitting across reserved path capacity. This might be an acceptable choice for a subset of restricted networking environments, but is by no means a safe practice for operation in the Internet. When the UDP traffic of such applications leaks out on unprovisioned Internet paths, it can significantly degrade the performance of other traffic sharing the path and even result in congestion collapse. Applications that support an uncontrolled or unadaptive transmission behavior SHOULD NOT do so by default and SHOULD instead require users to explicitly enable this mode of operation.

Low Data-Volume Applications

When applications that at any time exchange only a small number of UDP datagrams with a destination implement TFRC or one of the other congestion control schemes in Section 3.1.1, the network sees little benefit, because those mechanisms perform congestion control in a way that is only effective for longer transmissions.

Applications that at any time exchange only a small number of UDP datagrams with a destination SHOULD still control their transmission behavior by not sending on average more than one UDP datagram per round-trip time (RTT) to a destination. Similar to the recommendation in RFC1536, an application SHOULD maintain an estimate of the RTT for any destination with which it communicates. Applications SHOULD implement the algorithm specified in RFC2988 to compute a smoothed RTT (SRTT) estimate. They SHOULD also detect packet loss and exponentially back-off their retransmission timer when a loss event occurs. When implementing this scheme, applications need to choose a sensible initial value for the RTT. This value SHOULD generally be as conservative as possible for the given application. TCP uses an initial value of 3 seconds RFC2988, which is also RECOMMENDED as an initial value for UDP applications. SIP RFC3261 and GIST [GIST] use an initial value of 500 ms, and initial timeouts that are shorter than this are likely problematic in many cases. It is also important to note that the initial timeout is not the maximum possible timeout -- the RECOMMENDED algorithm in RFC2988 yields timeout values after a series of losses that are much longer than the initial value.

Some applications cannot maintain a reliable RTT estimate for a destination. The first case is that of applications that exchange too few UDP datagrams with a peer to establish a statistically accurate RTT estimate. Such applications MAY use a predetermined transmission interval that is exponentially backed-off when packets are lost. TCP uses an initial value of 3 seconds RFC2988, which is also RECOMMENDED as an initial value for UDP applications. SIP RFC3261 and GIST [GIST] use an interval of 500 ms, and shorter values are likely problematic in many cases. As in the previous case, note that the initial timeout is not the maximum possible timeout.

A second class of applications cannot maintain an RTT estimate for a destination, because the destination does not send return traffic. Such applications SHOULD NOT send more than one UDP datagram every 3 seconds, and SHOULD use an even less aggressive rate when possible. The 3-second interval was chosen based on TCP's retransmission timeout when the RTT is unknown RFC2988, and shorter values are likely problematic in many cases. Note that the sending rate in this

case must be more conservative than in the two previous cases, because the lack of return traffic prevents the detection of packet loss, i.e., congestion events, and the application therefore cannot perform exponential back-off to reduce load.

Applications that communicate bidirectionally SHOULD employ congestion control for both directions of the communication. For example, for a client-server, request-response-style application, clients SHOULD congestion-control their request transmission to a server, and the server SHOULD congestion-control its responses to the clients. Congestion in the forward and reverse direction is uncorrelated, and an application SHOULD either independently detect and respond to congestion along both directions, or limit new and retransmitted requests based on acknowledged responses across the entire round-trip path.

UDP Tunnels

One increasingly popular use of UDP is as a tunneling protocol, where a tunnel endpoint encapsulates the packets of another protocol inside UDP datagrams and transmits them to another tunnel endpoint, which decapsulates the UDP datagrams and forwards the original packets contained in the payload. Tunnels establish virtual links that appear to directly connect locations that are distant in the physical Internet topology and can be used to create virtual (private) networks. Using UDP as a tunneling protocol is attractive when the payload protocol is not supported by middleboxes that may exist along the path, because many middleboxes support transmission using UDP.

Well-implemented tunnels are generally invisible to the endpoints that happen to transmit over a path that includes tunneled links. On the other hand, to the routers along the path of a UDP tunnel, i.e., the routers between the two tunnel endpoints, the traffic that a UDP tunnel generates is a regular UDP flow, and the encapsulator and decapsulator appear as regular UDP-sending and -receiving applications. Because other flows can share the path with one or more UDP tunnels, congestion control needs to be considered.

Two factors determine whether a UDP tunnel needs to employ specific congestion control mechanisms -- first, whether the payload traffic is IP-based; second, whether the tunneling scheme generates UDP traffic at a volume that corresponds to the volume of payload traffic carried within the tunnel.

IP-based traffic is generally assumed to be congestion-controlled, i.e., it is assumed that the transport protocols generating IP-based traffic at the sender already employ mechanisms that are sufficient to address congestion on the path. Consequently, a tunnel carrying

IP-based traffic should already interact appropriately with other traffic sharing the path, and specific congestion control mechanisms for the tunnel are not necessary.

However, if the IP traffic in the tunnel is known to not be congestion-controlled, additional measures are RECOMMENDED in order to limit the impact of the tunneled traffic on other traffic sharing the path.

The following guidelines define these possible cases in more detail:

1. A tunnel generates UDP traffic at a volume that corresponds to

   the volume of payload traffic, and the payload traffic is IP-
   based and congestion-controlled.
   This is arguably the most common case for Internet tunnels.  In
   this case, the UDP tunnel SHOULD NOT employ its own congestion
   control mechanism, because congestion losses of tunneled traffic
   will already trigger an appropriate congestion response at the
   original senders of the tunneled traffic.
   Note that this guideline is built on the assumption that most IP-
   based communication is congestion-controlled.  If a UDP tunnel is
   used for IP-based traffic that is known to not be congestion-
   controlled, the next set of guidelines applies.

2. A tunnel generates UDP traffic at a volume that corresponds to

   the volume of payload traffic, and the payload traffic is not
   known to be IP-based, or is known to be IP-based but not
   congestion-controlled.
   This can be the case, for example, when some link-layer protocols
   are encapsulated within UDP (but not all link-layer protocols;
   some are congestion-controlled).  Because it is not known that
   congestion losses of tunneled non-IP traffic will trigger an
   appropriate congestion response at the senders, the UDP tunnel
   SHOULD employ an appropriate congestion control mechanism.
   Because tunnels are usually bulk-transfer applications as far as
   the intermediate routers are concerned, the guidelines in
   Section 3.1.1 apply.

3. A tunnel generates UDP traffic at a volume that does not

   correspond to the volume of payload traffic, independent of
   whether the payload traffic is IP-based or congestion-controlled.
   Examples of this class include UDP tunnels that send at a
   constant rate, increase their transmission rates under loss, for
   example, due to increasing redundancy when Forward Error
   Correction is used, or are otherwise constrained in their
   transmission behavior.  These specialized uses of UDP for
   tunneling go beyond the scope of the general guidelines given in
   this document.  The implementer of such specialized tunnels
   SHOULD carefully consider congestion control in the design of
   their tunneling mechanism.

Designing a tunneling mechanism requires significantly more expertise than needed for many other UDP applications, because tunnels virtualize lower-layer components of the Internet, and the virtualized components need to correctly interact with the infrastructure at that layer. This document only touches upon the congestion control considerations for implementing UDP tunnels; a discussion of other required tunneling behavior is out of scope.

Message Size Guidelines

IP fragmentation lowers the efficiency and reliability of Internet communication. The loss of a single fragment results in the loss of an entire fragmented packet, because even if all other fragments are received correctly, the original packet cannot be reassembled and delivered. This fundamental issue with fragmentation exists for both IPv4 and IPv6. In addition, some network address translators (NATs) and firewalls drop IP fragments. The network address translation performed by a NAT only operates on complete IP packets, and some firewall policies also require inspection of complete IP packets. Even with these being the case, some NATs and firewalls simply do not implement the necessary reassembly functionality, and instead choose to drop all fragments. Finally, RFC4963 documents other issues specific to IPv4 fragmentation.

Due to these issues, an application SHOULD NOT send UDP datagrams that result in IP packets that exceed the MTU of the path to the destination. Consequently, an application SHOULD either use the path MTU information provided by the IP layer or implement path MTU discovery itself RFC1191RFC1981RFC4821 to determine whether the path to a destination will support its desired message size without fragmentation.

Applications that do not follow this recommendation to do PMTU discovery SHOULD still avoid sending UDP datagrams that would result in IP packets that exceed the path MTU. Because the actual path MTU is unknown, such applications SHOULD fall back to sending messages that are shorter than the default effective MTU for sending (EMTU_S in RFC1122). For IPv4, EMTU_S is the smaller of 576 bytes and the first-hop MTU RFC1122. For IPv6, EMTU_S is 1280 bytes RFC2460. The effective PMTU for a directly connected destination (with no routers on the path) is the configured interface MTU, which could be

less than the maximum link payload size. Transmission of minimum- sized UDP datagrams is inefficient over paths that support a larger PMTU, which is a second reason to implement PMTU discovery.

To determine an appropriate UDP payload size, applications MUST subtract the size of the IP header (which includes any IPv4 optional headers or IPv6 extension headers) as well as the length of the UDP header (8 bytes) from the PMTU size. This size, known as the MMS_S, can be obtained from the TCP/IP stack RFC1122.

Applications that do not send messages that exceed the effective PMTU of IPv4 or IPv6 need not implement any of the above mechanisms. Note that the presence of tunnels can cause an additional reduction of the effective PMTU, so implementing PMTU discovery may be beneficial.

Applications that fragment an application-layer message into multiple UDP datagrams SHOULD perform this fragmentation so that each datagram can be received independently, and be independently retransmitted in the case where an application implements its own reliability mechanisms.

Reliability Guidelines

Application designers are generally aware that UDP does not provide any reliability, e.g., it does not retransmit any lost packets. Often, this is a main reason to consider UDP as a transport. Applications that do require reliable message delivery MUST implement an appropriate mechanism themselves.

UDP also does not protect against datagram duplication, i.e., an application may receive multiple copies of the same UDP datagram. Application designers SHOULD verify that their application handles datagram duplication gracefully, and may consequently need to implement mechanisms to detect duplicates. Even if UDP datagram reception triggers idempotent operations, applications may want to suppress duplicate datagrams to reduce load.

In addition, the Internet can significantly delay some packets with respect to others, e.g., due to routing transients, intermittent connectivity, or mobility. This can cause reordering, where UDP datagrams arrive at the receiver in an order different from the transmission order. Applications that require ordered delivery MUST reestablish datagram ordering themselves.

Finally, it is important to note that delay spikes can be very large. This can cause reordered packets to arrive many seconds after they were sent. RFC0793 defines the maximum delay a TCP segment should experience -- the Maximum Segment Lifetime (MSL) -- as 2 minutes. No

other RFC defines an MSL for other transport protocols or IP itself. This document clarifies that the MSL value to be used for UDP SHOULD be the same 2 minutes as for TCP. Applications SHOULD be robust to the reception of delayed or duplicate packets that are received within this 2-minute interval.

An application that requires reliable and ordered message delivery SHOULD choose an IETF standard transport protocol that provides these features. If this is not possible, it will need to implement a set of appropriate mechanisms itself.

Checksum Guidelines

The UDP header includes an optional, 16-bit one's complement checksum that provides an integrity check. This results in a relatively weak protection in terms of coding theory RFC3819, and application developers SHOULD implement additional checks where data integrity is important, e.g., through a Cyclic Redundancy Check (CRC) included with the data to verify the integrity of an entire object/file sent over the UDP service.

The UDP checksum provides a statistical guarantee that the payload was not corrupted in transit. It also allows the receiver to verify that it was the intended destination of the packet, because it covers the IP addresses, port numbers, and protocol number, and it verifies that the packet is not truncated or padded, because it covers the size field. It therefore protects an application against receiving corrupted payload data in place of, or in addition to, the data that was sent. This check is not strong from a coding or cryptographic perspective, and is not designed to detect physical-layer errors or malicious modification of the datagram RFC3819.

Applications SHOULD enable UDP checksums, although RFC0768 permits the option to disable their use. Applications that choose to disable UDP checksums when transmitting over IPv4 therefore MUST NOT make assumptions regarding the correctness of received data and MUST behave correctly when a UDP datagram is received that was originally sent to a different destination or is otherwise corrupted. The use of the UDP checksum is REQUIRED when applications transmit UDP over IPv6 RFC2460.

UDP-Lite

A special class of applications can derive benefit from having partially-damaged payloads delivered, rather than discarded, when using paths that include error-prone links. Such applications can tolerate payload corruption and MAY choose to use the Lightweight User Datagram Protocol (UDP-Lite) RFC3828 variant of UDP instead of

basic UDP. Applications that choose to use UDP-Lite instead of UDP should still follow the congestion control and other guidelines described for use with UDP in Section 3.

UDP-Lite changes the semantics of the UDP "payload length" field to that of a "checksum coverage length" field. Otherwise, UDP-Lite is semantically identical to UDP. The interface of UDP-Lite differs from that of UDP by the addition of a single (socket) option that communicates a checksum coverage length value: at the sender, this specifies the intended checksum coverage, with the remaining unprotected part of the payload called the "error-insensitive part". By default, the UDP-Lite checksum coverage extends across the entire datagram. If required, an application may dynamically modify this length value, e.g., to offer greater protection to some messages. UDP-Lite always verifies that a packet was delivered to the intended destination, i.e., always verifies the header fields. Errors in the insensitive part will not cause a UDP datagram to be discarded by the destination. Applications using UDP-Lite therefore MUST NOT make assumptions regarding the correctness of the data received in the insensitive part of the UDP-Lite payload.

The sending application SHOULD select the minimum checksum coverage to include all sensitive protocol headers. For example, applications that use the Real-Time Protocol (RTP) RFC3550 will likely want to protect the RTP header against corruption. Applications, where appropriate, MUST also introduce their own appropriate validity checks for protocol information carried in the insensitive part of the UDP-Lite payload (e.g., internal CRCs).

The receiver must set a minimum coverage threshold for incoming packets that is not smaller than the smallest coverage used by the sender RFC3828. The receiver SHOULD select a threshold that is sufficiently large to block packets with an inappropriately short coverage field. This may be a fixed value, or may be negotiated by an application. UDP-Lite does not provide mechanisms to negotiate the checksum coverage between the sender and receiver.

Applications may still experience packet loss, rather than corruption, when using UDP-Lite. The enhancements offered by UDP- Lite rely upon a link being able to intercept the UDP-Lite header to correctly identify the partial coverage required. When tunnels and/or encryption are used, this can result in UDP-Lite datagrams being treated the same as UDP datagrams, i.e., result in packet loss. Use of IP fragmentation can also prevent special treatment for UDP- Lite datagrams, and this is another reason why applications SHOULD avoid IP fragmentation (Section 3.2).

Middlebox Traversal Guidelines

Network address translators (NATs) and firewalls are examples of intermediary devices ("middleboxes") that can exist along an end-to- end path. A middlebox typically performs a function that requires it to maintain per-flow state. For connection-oriented protocols, such as TCP, middleboxes snoop and parse the connection-management traffic and create and destroy per-flow state accordingly. For a connectionless protocol such as UDP, this approach is not possible. Consequently, middleboxes may create per-flow state when they see a packet that indicates a new flow, and destroy the state after some period of time during which no packets belonging to the same flow have arrived.

Depending on the specific function that the middlebox performs, this behavior can introduce a time-dependency that restricts the kinds of UDP traffic exchanges that will be successful across the middlebox. For example, NATs and firewalls typically define the partial path on one side of them to be interior to the domain they serve, whereas the partial path on their other side is defined to be exterior to that domain. Per-flow state is typically created when the first packet crosses from the interior to the exterior, and while the state is present, NATs and firewalls will forward return traffic. Return traffic that arrives after the per-flow state has timed out is dropped, as is other traffic that arrives from the exterior.

Many applications that use UDP for communication operate across middleboxes without needing to employ additional mechanisms. One example is the Domain Name System (DNS), which has a strict request- response communication pattern that typically completes within seconds.

Other applications may experience communication failures when middleboxes destroy the per-flow state associated with an application session during periods when the application does not exchange any UDP traffic. Applications SHOULD be able to gracefully handle such communication failures and implement mechanisms to re-establish application-layer sessions and state.

For some applications, such as media transmissions, this re- synchronization is highly undesirable, because it can cause user- perceivable playback artifacts. Such specialized applications MAY send periodic keep-alive messages to attempt to refresh middlebox state. It is important to note that keep-alive messages are NOT RECOMMENDED for general use -- they are unnecessary for many applications and can consume significant amounts of system and network resources.

An application that needs to employ keep-alives to deliver useful service over UDP in the presence of middleboxes SHOULD NOT transmit them more frequently than once every 15 seconds and SHOULD use longer intervals when possible. No common timeout has been specified for per-flow UDP state for arbitrary middleboxes. NATs require a state timeout of 2 minutes or longer RFC4787. However, empirical evidence suggests that a significant fraction of currently deployed middleboxes unfortunately use shorter timeouts. The timeout of 15 seconds originates with the Interactive Connectivity Establishment (ICE) protocol [ICE]. When applications are deployed in more controlled network environments, the deployers SHOULD investigate whether the target environment allows applications to use longer intervals, or whether it offers mechanisms to explicitly control middlebox state timeout durations, for example, using Middlebox Communications (MIDCOM) RFC3303, Next Steps in Signaling (NSIS) [NSLP], or Universal Plug and Play (UPnP) [UPnP]. It is RECOMMENDED that applications apply slight random variations ("jitter") to the timing of keep-alive transmissions, to reduce the potential for persistent synchronization between keep-alive transmissions from different hosts.

Sending keep-alives is not a substitute for implementing robust connection handling. Like all UDP datagrams, keep-alives can be delayed or dropped, causing middlebox state to time out. In addition, the congestion control guidelines in Section 3.1 cover all UDP transmissions by an application, including the transmission of middlebox keep-alives. Congestion control may thus lead to delays or temporary suspension of keep-alive transmission.

Keep-alive messages are NOT RECOMMENDED for general use. They are unnecessary for many applications and may consume significant resources. For example, on battery-powered devices, if an application needs to maintain connectivity for long periods with little traffic, the frequency at which keep-alives are sent can become the determining factor that governs power consumption, depending on the underlying network technology. Because many middleboxes are designed to require keep-alives for TCP connections at a frequency that is much lower than that needed for UDP, this difference alone can often be sufficient to prefer TCP over UDP for these deployments. On the other hand, there is anecdotal evidence that suggests that direct communication through middleboxes, e.g., by using ICE [ICE], does succeed less often with TCP than with UDP. The tradeoffs between different transport protocols -- especially when it comes to middlebox traversal -- deserve careful analysis.

Programming Guidelines

The de facto standard application programming interface (API) for TCP/IP applications is the "sockets" interface [POSIX]. Some platforms also offer applications the ability to directly assemble and transmit IP packets through "raw sockets" or similar facilities. This is a second, more cumbersome method of using UDP. The guidelines in this document cover all such methods through which an application may use UDP. Because the sockets API is by far the most common method, the remainder of this section discusses it in more detail.

Although the sockets API was developed for UNIX in the early 1980s, a wide variety of non-UNIX operating systems also implement this. The sockets API supports both IPv4 and IPv6 RFC3493. The UDP sockets API differs from that for TCP in several key ways. Because application programmers are typically more familiar with the TCP sockets API, the remainder of this section discusses these differences. [STEVENS] provides usage examples of the UDP sockets API.

UDP datagrams may be directly sent and received, without any connection setup. Using the sockets API, applications can receive packets from more than one IP source address on a single UDP socket. Some servers use this to exchange data with more than one remote host through a single UDP socket at the same time. Many applications need to ensure that they receive packets from a particular source address; these applications MUST implement corresponding checks at the application layer or explicitly request that the operating system filter the received packets.

If a client/server application executes on a host with more than one IP interface, the application SHOULD send any UDP responses with an IP source address that matches the IP destination address of the UDP datagram that carried the request (see RFC1122, Section 4.1.3.5). Many middleboxes expect this transmission behavior and drop replies that are sent from a different IP address, as explained in Section 3.5.

A UDP receiver can receive a valid UDP datagram with a zero-length payload. Note that this is different from a return value of zero from a read() socket call, which for TCP indicates the end of the connection.

Many operating systems also allow a UDP socket to be connected, i.e., to bind a UDP socket to a specific pair of addresses and ports. This is similar to the corresponding TCP sockets API functionality. However, for UDP, this is only a local operation that serves to

simplify the local send/receive functions and to filter the traffic for the specified addresses and ports. Binding a UDP socket does not establish a connection -- UDP does not notify the remote end when a local UDP socket is bound. Binding a socket also allows configuring options that affect the UDP or IP layers, for example, use of the UDP checksum or the IP Timestamp option. On some stacks, a bound socket also allows an application to be notified when ICMP error messages are received for its transmissions RFC1122.

UDP provides no flow-control. This is another reason why UDP-based applications need to be robust in the presence of packet loss. This loss can also occur within the sending host, when an application sends data faster than the line rate of the outbound network interface. It can also occur on the destination, where receive calls fail to return all the data that was sent when the application issues them too infrequently (i.e., such that the receive buffer overflows). Robust flow control mechanisms are difficult to implement, which is why applications that need this functionality SHOULD consider using a full-featured transport protocol.

When an application closes a TCP, SCTP or DCCP socket, the transport protocol on the receiving host is required to maintain TIME-WAIT state. This prevents delayed packets from the closed connection instance from being mistakenly associated with a later connection instance that happens to reuse the same IP address and port pairs. The UDP protocol does not implement such a mechanism. Therefore, UDP-based applications need to be robust in this case. One application may close a socket or terminate, followed in time by another application receiving on the same port. This later application may then receive packets intended for the first application that were delayed in the network.

The Internet can provide service differentiation to applications based on IP-layer packet markings RFC2475. This facility can be used for UDP traffic. Different operating systems provide different interfaces for marking packets to applications. Differentiated services require support from the network, and application deployers need to discuss the provisioning of this functionality with their network operator.

ICMP Guidelines

Applications can utilize information about ICMP error messages that the UDP layer passes up for a variety of purposes RFC1122. Applications SHOULD validate that the information in the ICMP message payload, e.g., a reported error condition, corresponds to a UDP datagram that the application actually sent. Note that not all APIs

have the necessary functions to support this validation, and some APIs already perform this validation internally before passing ICMP information to the application.

Any application response to ICMP error messages SHOULD be robust to temporary routing failures, i.e., transient ICMP "unreachable" messages should not normally cause a communication abort. Applications SHOULD appropriately process ICMP messages generated in response to transmitted traffic. A correct response often requires context, such as local state about communication instances to each destination, that although readily available in connection-oriented transport protocols is not always maintained by UDP-based applications.

Security Considerations

UDP does not provide communications security. Applications that need to protect their communications against eavesdropping, tampering, or message forgery SHOULD employ end-to-end security services provided by other IETF protocols. Applications that respond to short requests with potentially large responses are vulnerable to amplification attacks, and SHOULD authenticate the sender before responding. The source IP address of a request is not a useful authenticator, because it can be spoofed.

One option of securing UDP communications is with IPsec RFC4301, which can provide authentication for flows of IP packets through the Authentication Header (AH) RFC4302 and encryption and/or authentication through the Encapsulating Security Payload (ESP) RFC4303. Applications use the Internet Key Exchange (IKE) RFC4306 to configure IPsec for their sessions. Depending on how IPsec is configured for a flow, it can authenticate or encrypt the UDP headers as well as UDP payloads. If an application only requires authentication, ESP with no encryption but with authentication is often a better option than AH, because ESP can operate across middleboxes. An application that uses IPsec requires the support of an operating system that implements the IPsec protocol suite.

Although it is possible to use IPsec to secure UDP communications, not all operating systems support IPsec or allow applications to easily configure it for their flows. A second option of securing UDP communications is through Datagram Transport Layer Security (DTLS) RFC4347. DTLS provides communication privacy by encrypting UDP payloads. It does not protect the UDP headers. Applications can implement DTLS without relying on support from the operating system.

Many other options for authenticating or encrypting UDP payloads exist. For example, the GSS-API security framework RFC2743 or Cryptographic Message Syntax (CMS) RFC3852 could be used to protect UDP payloads. The IETF standard for securing RTP RFC3550 communication sessions over UDP is the Secure Real-time Transport Protocol (SRTP) RFC3711. In some applications, a better solution is to protect larger stand-alone objects, such as files or messages, instead of individual UDP payloads. In these situations, CMS RFC3852, S/MIME RFC3851 or OpenPGP RFC4880 could be used. In addition, there are many non-IETF protocols in this area.

Like congestion control mechanisms, security mechanisms are difficult to design and implement correctly. It is hence RECOMMENDED that applications employ well-known standard security mechanisms such as DTLS or IPsec, rather than inventing their own.

The Generalized TTL Security Mechanism (GTSM) RFC5082 may be used with UDP applications (especially when the intended endpoint is on the same link as the sender). This is a lightweight mechanism that allows a receiver to filter unwanted packets.

In terms of congestion control, RFC2309 and RFC2914 discuss the dangers of congestion-unresponsive flows to the Internet. This document provides guidelines to designers of UDP-based applications to congestion-control their transmissions, and does not raise any additional security concerns.

Summary

This section summarizes the guidelines made in Sections 3 and 4 in a tabular format (Table 1) for easy referencing.

+---------------------------------------------------------+---------+ | Recommendation | Section | +---------------------------------------------------------+---------+ | MUST tolerate a wide range of Internet path conditions | 3 | | SHOULD use a full-featured transport (TCP, SCTP, DCCP) | | | | | | SHOULD control rate of transmission | 3.1 | | SHOULD perform congestion control over all traffic | | | | | | for bulk transfers, | 3.1.1 | | SHOULD consider implementing TFRC | | | else, SHOULD in other ways use bandwidth similar to TCP | | | | | | for non-bulk transfers, | 3.1.2 | | SHOULD measure RTT and transmit max. 1 datagram/RTT | | | else, SHOULD send at most 1 datagram every 3 seconds | | | SHOULD back-off retransmission timers following loss | | | | | | for tunnels carrying IP Traffic, | 3.1.3 | | SHOULD NOT perform congestion control | | | | | | for non-IP tunnels or rate not determined by traffic, | 3.1.3 | | SHOULD perform congestion control | | | | | | SHOULD NOT send datagrams that exceed the PMTU, i.e., | 3.2 | | SHOULD discover PMTU or send datagrams < minimum PMTU | | | | | | SHOULD handle datagram loss, duplication, reordering | 3.3 | | SHOULD be robust to delivery delays up to 2 minutes | | | | | | SHOULD enable IPv4 UDP checksum | 3.4 | | MUST enable IPv6 UDP checksum | | | else, MAY use UDP-Lite with suitable checksum coverage | 3.4.1 | | | | | SHOULD NOT always send middlebox keep-alives | 3.5 | | MAY use keep-alives when needed (min. interval 15 sec) | | | | | | MUST check IP source address | 3.6 | | and, for client/server applications | | | SHOULD send responses from src address matching request | | | | | | SHOULD use standard IETF security protocols when needed | 4 | +---------------------------------------------------------+---------+

                Table 1: Summary of recommendations

Acknowledgments

Thanks to Paul Aitken, Mark Allman, Francois Audet, Iljitsch van Beijnum, Stewart Bryant, Remi Denis-Courmont, Lisa Dusseault, Wesley Eddy, Pasi Eronen, Sally Floyd, Robert Hancock, Jeffrey Hutzelman, Cullen Jennings, Tero Kivinen, Peter Koch, Jukka Manner, Philip Matthews, Joerg Ott, Colin Perkins, Tom Petch, Carlos Pignataro, Pasi Sarolahti, Pascal Thubert, Joe Touch, Dave Ward, and Magnus Westerlund for their comments on this document.

The middlebox traversal guidelines in Section 3.5 incorporate ideas from Section 5 of [BEHAVE-APP] by Bryan Ford, Pyda Srisuresh, and Dan Kegel.

Lars Eggert is partly funded by [TRILOGY], a research project supported by the European Commission under its Seventh Framework Program. Gorry Fairhurst was partly funded by the EC SatNEx project.

References

Normative References

RFC0768 Postel, J., "User Datagram Protocol", STD 6, RFC 768,

             August 1980.

RFC0793 Postel, J., "Transmission Control Protocol", STD 7,

             RFC 793, September 1981.

RFC1122 Braden, R., "Requirements for Internet Hosts -

             Communication Layers", STD 3, RFC 1122, October 1989.

RFC1191 Mogul, J. and S. Deering, "Path MTU discovery",

             RFC 1191, November 1990.

RFC1981 McCann, J., Deering, S., and J. Mogul, "Path MTU

             Discovery for IP version 6", RFC 1981, August 1996.

RFC2119 Bradner, S., "Key words for use in RFCs to Indicate

             Requirement Levels", BCP 14, RFC 2119, March 1997.

RFC2460 Deering, S. and R. Hinden, "Internet Protocol, Version

             6 (IPv6) Specification", RFC 2460, December 1998.

RFC2914 Floyd, S., "Congestion Control Principles", BCP 41,

             RFC 2914, September 2000.

RFC2988 Paxson, V. and M. Allman, "Computing TCP's

             Retransmission Timer", RFC 2988, November 2000.

RFC3828 Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E.,

             and G. Fairhurst, "The Lightweight User Datagram
             Protocol (UDP-Lite)", RFC 3828, July 2004.

RFC4787 Audet, F. and C. Jennings, "Network Address Translation

             (NAT) Behavioral Requirements for Unicast UDP",
             BCP 127, RFC 4787, January 2007.

RFC4821 Mathis, M. and J. Heffner, "Packetization Layer Path

             MTU Discovery", RFC 4821, March 2007.

RFC5348 Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP

             Friendly Rate Control (TFRC): Protocol Specification",
             RFC 5348, September 2008.

Informative References

[BEHAVE-APP] Ford, B., "Application Design Guidelines for Traversal

             through Network Address Translators", Work in Progress,
             March 2007.

[CCID4] Floyd, S. and E. Kohler, "Profile for Datagram

             Congestion Control Protocol (DCCP) Congestion ID 4:
             TCP-Friendly Rate Control for Small Packets (TFRC-SP)",
             Work in Progress, February 2008.

[FABER] Faber, T., Touch, J., and W. Yue, "The TIME-WAIT State

             in TCP and Its Effect on Busy Servers", Proc. IEEE
             Infocom, March 1999.

[GIST] Schulzrinne, H. and R. Hancock, "GIST: General Internet

             Signalling Transport", Work in Progress, July 2008.

[ICE] Rosenberg, J., "Interactive Connectivity Establishment

             (ICE): A Protocol for Network Address Translator (NAT)
             Traversal for Offer/Answer Protocols", Work
             in Progress, October 2007.

[NSLP] Stiemerling, M., Tschofenig, H., Aoun, C., and E.

             Davies, "NAT/Firewall NSIS Signaling Layer Protocol
             (NSLP)", Work in Progress, September 2008.

[POSIX] IEEE Std. 1003.1-2001, "Standard for Information

             Technology - Portable Operating System Interface
             (POSIX)", Open Group Technical Standard: Base
             Specifications Issue 6, ISO/IEC 9945:2002,
             December 2001.

RFC0896 Nagle, J., "Congestion control in IP/TCP

             internetworks", RFC 896, January 1984.

RFC0919 Mogul, J., "Broadcasting Internet Datagrams", STD 5,

             RFC 919, October 1984.

RFC1112 Deering, S., "Host extensions for IP multicasting",

             STD 5, RFC 1112, August 1989.

RFC1536 Kumar, A., Postel, J., Neuman, C., Danzig, P., and S.

             Miller, "Common DNS Implementation Errors and Suggested
             Fixes", RFC 1536, October 1993.

RFC1546 Partridge, C., Mendez, T., and W. Milliken, "Host

             Anycasting Service", RFC 1546, November 1993.

RFC2309 Braden, B., Clark, D., Crowcroft, J., Davie, B.,

             Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
             Minshall, G., Partridge, C., Peterson, L.,
             Ramakrishnan, K., Shenker, S., Wroclawski, J., and L.
             Zhang, "Recommendations on Queue Management and
             Congestion Avoidance in the Internet", RFC 2309,
             April 1998.

RFC2475 Blake, S., Black, D., Carlson, M., Davies, E., Wang,

             Z., and W. Weiss, "An Architecture for Differentiated
             Services", RFC 2475, December 1998.

RFC2675 Borman, D., Deering, S., and R. Hinden, "IPv6

             Jumbograms", RFC 2675, August 1999.

RFC2743 Linn, J., "Generic Security Service Application Program

             Interface Version 2, Update 1", RFC 2743, January 2000.

RFC3048 Whetten, B., Vicisano, L., Kermode, R., Handley, M.,

             Floyd, S., and M. Luby, "Reliable Multicast Transport
             Building Blocks for One-to-Many Bulk-Data Transfer",
             RFC 3048, January 2001.

RFC3124 Balakrishnan, H. and S. Seshan, "The Congestion

             Manager", RFC 3124, June 2001.

RFC3261 Rosenberg, J., Schulzrinne, H., Camarillo, G.,

             Johnston, A., Peterson, J., Sparks, R., Handley, M.,
             and E. Schooler, "SIP: Session Initiation Protocol",
             RFC 3261, June 2002.

RFC3303 Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A.,

             and A. Rayhan, "Middlebox communication architecture
             and framework", RFC 3303, August 2002.

RFC3493 Gilligan, R., Thomson, S., Bound, J., McCann, J., and

             W. Stevens, "Basic Socket Interface Extensions for
             IPv6", RFC 3493, February 2003.

RFC3550 Schulzrinne, H., Casner, S., Frederick, R., and V.

             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, July 2003.

RFC3551 Schulzrinne, H. and S. Casner, "RTP Profile for Audio

             and Video Conferences with Minimal Control", STD 65,
             RFC 3551, July 2003.

RFC3711 Baugher, M., McGrew, D., Naslund, M., Carrara, E., and

             K. Norrman, "The Secure Real-time Transport Protocol
             (SRTP)", RFC 3711, March 2004.

RFC3738 Luby, M. and V. Goyal, "Wave and Equation Based Rate

             Control (WEBRC) Building Block", RFC 3738, April 2004.

RFC3758 Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.

             Conrad, "Stream Control Transmission Protocol (SCTP)
             Partial Reliability Extension", RFC 3758, May 2004.

RFC3819 Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,

             Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and
             L. Wood, "Advice for Internet Subnetwork Designers",
             BCP 89, RFC 3819, July 2004.

RFC3851 Ramsdell, B., "Secure/Multipurpose Internet Mail

             Extensions (S/MIME) Version 3.1 Message Specification",
             RFC 3851, July 2004.

RFC3852 Housley, R., "Cryptographic Message Syntax (CMS)",

             RFC 3852, July 2004.

RFC4301 Kent, S. and K. Seo, "Security Architecture for the

             Internet Protocol", RFC 4301, December 2005.

RFC4302 Kent, S., "IP Authentication Header", RFC 4302,

             December 2005.

RFC4303 Kent, S., "IP Encapsulating Security Payload (ESP)",

             RFC 4303, December 2005.

RFC4306 Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",

             RFC 4306, December 2005.

RFC4340 Kohler, E., Handley, M., and S. Floyd, "Datagram

             Congestion Control Protocol (DCCP)", RFC 4340,
             March 2006.

RFC4341 Floyd, S. and E. Kohler, "Profile for Datagram

             Congestion Control Protocol (DCCP) Congestion Control
             ID 2: TCP-like Congestion Control", RFC 4341,
             March 2006.

RFC4342 Floyd, S., Kohler, E., and J. Padhye, "Profile for

             Datagram Congestion Control Protocol (DCCP) Congestion
             Control ID 3: TCP-Friendly Rate Control (TFRC)",
             RFC 4342, March 2006.

RFC4347 Rescorla, E. and N. Modadugu, "Datagram Transport Layer

             Security", RFC 4347, April 2006.

RFC4654 Widmer, J. and M. Handley, "TCP-Friendly Multicast

             Congestion Control (TFMCC): Protocol Specification",
             RFC 4654, August 2006.

RFC4880 Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and

             R. Thayer, "OpenPGP Message Format", RFC 4880,
             November 2007.

RFC4960 Stewart, R., "Stream Control Transmission Protocol",

             RFC 4960, September 2007.

RFC4963 Heffner, J., Mathis, M., and B. Chandler, "IPv4

             Reassembly Errors at High Data Rates", RFC 4963,
             July 2007.

RFC4987 Eddy, W., "TCP SYN Flooding Attacks and Common

             Mitigations", RFC 4987, August 2007.

RFC5082 Gill, V., Heasley, J., Meyer, D., Savola, P., and C.

             Pignataro, "The Generalized TTL Security Mechanism
             (GTSM)", RFC 5082, October 2007.

[STEVENS] Stevens, W., Fenner, B., and A. Rudoff, "UNIX Network

             Programming, The sockets Networking API", Addison-
             Wesley, 2004.

[TRILOGY] "Trilogy Project", <http://www.trilogy-project.org>.

[UPnP] UPnP Forum, "Internet Gateway Device (IGD) Standardized

             Device Control Protocol V 1.0", November 2001.

Authors' Addresses

Lars Eggert Nokia Research Center P.O. Box 407 Nokia Group 00045 Finland

Phone: +358 50 48 24461 EMail: [email protected] URI: http://people.nokia.net/~lars/

Godred Fairhurst University of Aberdeen Department of Engineering Fraser Noble Building Aberdeen AB24 3UE Scotland

EMail: [email protected] URI: http://www.erg.abdn.ac.uk/