Difference between revisions of "RFC1190"

From RFC-Wiki
Line 1: Line 1:
 
 
 
 
 
 
 
Network Working Group                                  CIP Working Group
 
Network Working Group                                  CIP Working Group
 
Request for Comments: 1190                          C. Topolcic, Editor
 
Request for Comments: 1190                          C. Topolcic, Editor
 
Obsoletes: IEN-119                                          October 1990
 
Obsoletes: IEN-119                                          October 1990
  
 
+
    Experimental Internet Stream Protocol, Version 2 (ST-II)
        Experimental Internet Stream Protocol, Version 2 (ST-II)
 
 
 
  
 
Status of this Memo
 
Status of this Memo
  
  This memo defines a revised version of the Internet Stream Protocol,
+
This memo defines a revised version of the Internet Stream Protocol,
  originally defined in IEN-119 [8], based on results from experiments
+
originally defined in IEN-119 [8], based on results from experiments
  with the original version, and subsequent requests, discussion, and
+
with the original version, and subsequent requests, discussion, and
  suggestions for improvements.  This is a Limited-Use Experimental
+
suggestions for improvements.  This is a Limited-Use Experimental
  Protocol.  Please refer to the current edition of the "IAB Official
+
Protocol.  Please refer to the current edition of the "IAB Official
  Protocol Standards" for the standardization state and status of this
+
Protocol Standards" for the standardization state and status of this
  protocol.  Distribution of this memo is unlimited.
+
protocol.  Distribution of this memo is unlimited.
  
1.        Abstract
+
== Abstract ==
  
  This memo defines the Internet Stream Protocol, Version 2 (ST-II), an
+
This memo defines the Internet Stream Protocol, Version 2 (ST-II), an
  IP-layer protocol that provides end-to-end guaranteed service across
+
IP-layer protocol that provides end-to-end guaranteed service across
  an internet.  This specification obsoletes IEN 119 "ST - A Proposed
+
an internet.  This specification obsoletes IEN 119 "ST - A Proposed
  Internet Stream Protocol" written by Jim Forgie in 1979, the previous
+
Internet Stream Protocol" written by Jim Forgie in 1979, the previous
  specification of ST.  ST-II is not compatible with Version 1 of the
+
specification of ST.  ST-II is not compatible with Version 1 of the
  protocol, but maintains much of the architecture and philosophy of
+
protocol, but maintains much of the architecture and philosophy of
  that version.  It is intended to fill in some of the areas left
+
that version.  It is intended to fill in some of the areas left
  unaddressed, to make it easier to implement, and to support a wider
+
unaddressed, to make it easier to implement, and to support a wider
  range of applications.
+
range of applications.
  
 +
1.1.      Table of Contents
  
 +
              Status of this Memo .  .  .  .  .  .  .  .  .  .  .  .  1
 +
      1.      Abstract  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
 +
      1.1.      Table of Contents  .  .  .  .  .  .  .  .  .  .  .  2
 +
      1.2.      List of Figures  .  .  .  .  .  .  .  .  .  .  .  .  4
  
 +
      2.      Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7
 +
      2.1.      Major Differences Between ST and ST-II  .  .  .  .  8
 +
      2.2.      Concepts and Terminology  .  .  .  .  .  .  .  .  .  9
 +
      2.3.      Relationship Between Applications and ST .  .  .  .  11
 +
      2.4.      ST Control Message Protocol  .  .  .  .  .  .  .  .  12
 +
      2.5.      Flow Specifications .  .  .  .  .  .  .  .  .  .  .  14
  
 +
      3.      ST Control Message Protocol Functional Description  .  17
 +
      3.1.      Stream Setup  .  .  .  .  .  .  .  .  .  .  .  .  .  18
 +
      3.1.1.        Initial Setup at the Origin  .  .  .  .  .  .  .  18
 +
      3.1.2.        Invoking the Routing Function  .  .  .  .  .  .  19
 +
      3.1.3.        Reserving Resources .  .  .  .  .  .  .  .  .  .  19
 +
      3.1.4.        Sending CONNECT Messages  .  .  .  .  .  .  .  .  20
 +
      3.1.5.        CONNECT Processing by an Intermediate Agent .  .  22
 +
      3.1.6.        Setup at the Targets  .  .  .  .  .  .  .  .  .  23
 +
      3.1.7.        ACCEPT Processing by an Intermediate Agent  .  .  24
 +
      3.1.8.        ACCEPT Processing by the Origin .  .  .  .  .  .  26
 +
      3.1.9.        Processing a REFUSE Message  .  .  .  .  .  .  .  27
 +
      3.2.      Data Transfer .  .  .  .  .  .  .  .  .  .  .  .  .  30
 +
      3.3.      Modifying an Existing Stream .  .  .  .  .  .  .  .  31
 +
      3.3.1.        Adding a Target  .  .  .  .  .  .  .  .  .  .  .  31
 +
      3.3.2.        The Origin Removing a Target .  .  .  .  .  .  .  33
 +
      3.3.3.        A Target Deleting Itself  .  .  .  .  .  .  .  .  35
 +
      3.3.4.        Changing the FlowSpec  .  .  .  .  .  .  .  .  .  36
 +
      3.4.      Stream Tear Down .  .  .  .  .  .  .  .  .  .  .  .  36
 +
      3.5.      Exceptional Cases  .  .  .  .  .  .  .  .  .  .  .  37
 +
      3.5.1.        Setup Failure due to CONNECT Timeout  .  .  .  .  37
 +
      3.5.2.        Problems due to Routing Inconsistency .  .  .  .  38
 +
      3.5.3.        Setup Failure due to a Routing Failure  .  .  .  39
 +
      3.5.4.        Problems in Reserving Resources .  .  .  .  .  .  41
 +
      3.5.5.        Setup Failure due to ACCEPT Timeout  .  .  .  .  41
 +
      3.5.6.        Problems Caused by CHANGE Messages .  .  .  .  .  42
 +
      3.5.7.        Notification of Changes Forced by Failures  .  .  42
 +
      3.6.      Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  44
 +
      3.6.1.        HID Field Option .  .  .  .  .  .  .  .  .  .  .  44
 +
      3.6.2.        PTP Option .  .  .  .  .  .  .  .  .  .  .  .  .  44
 +
      3.6.3.        FDx Option .  .  .  .  .  .  .  .  .  .  .  .  .  45
 +
      3.6.4.        NoRecovery Option  .  .  .  .  .  .  .  .  .  .  46
 +
      3.6.5.        RevChrg Option  .  .  .  .  .  .  .  .  .  .  .  46
 +
      3.6.6.        Source Route Option .  .  .  .  .  .  .  .  .  .  46
 +
      3.7.      Ancillary Functions .  .  .  .  .  .  .  .  .  .  .  48
 +
      3.7.1.        Failure Detection  .  .  .  .  .  .  .  .  .  .  48
 +
      3.7.1.1.        Network Failures .  .  .  .  .  .  .  .  .  .  48
 +
      3.7.1.2.        Detecting ST Stream Failures .  .  .  .  .  .  49
 +
      3.7.1.3.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  51
  
 +
      3.7.2.        Failure Recovery .  .  .  .  .  .  .  .  .  .  .  51
 +
      3.7.2.1.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  55
 +
      3.7.3.        A Group of Streams  .  .  .  .  .  .  .  .  .  .  56
 +
      3.7.3.1.        Group Name Generator  .  .  .  .  .  .  .  .  57
 +
      3.7.3.2.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  57
 +
      3.7.4.        HID Negotiation  .  .  .  .  .  .  .  .  .  .  .  58
 +
      3.7.4.1.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  64
 +
      3.7.5.        IP Encapsulation of ST .  .  .  .  .  .  .  .  .  64
 +
      3.7.5.1.        IP Multicasting  .  .  .  .  .  .  .  .  .  .  65
 +
      3.7.6.        Retransmission  .  .  .  .  .  .  .  .  .  .  .  66
 +
      3.7.7.        Routing .  .  .  .  .  .  .  .  .  .  .  .  .  .  67
 +
      3.7.8.        Security  .  .  .  .  .  .  .  .  .  .  .  .  .  67
 +
      3.8.      ST Service Interfaces  .  .  .  .  .  .  .  .  .  .  68
 +
      3.8.1.        Access to Routing Information  .  .  .  .  .  .  69
 +
      3.8.2.        Access to Network Layer Resource Reservation  .  70
 +
      3.8.3.        Network Layer Services Utilized .  .  .  .  .  .  71
 +
      3.8.4.        IP Services Utilized  .  .  .  .  .  .  .  .  .  71
 +
      3.8.5.        ST Layer Services Provided  .  .  .  .  .  .  .  72
  
 +
      4.      ST Protocol Data Unit Descriptions .  .  .  .  .  .  .  75
 +
      4.1.      Data Packets  .  .  .  .  .  .  .  .  .  .  .  .  .  76
 +
      4.2.      ST Control Message Protocol Descriptions .  .  .  .  77
 +
      4.2.1.        ST Control Messages .  .  .  .  .  .  .  .  .  .  79
 +
      4.2.2.        Common SCMP Elements  .  .  .  .  .  .  .  .  .  80
 +
      4.2.2.1.        DetectorIPAddress  .  .  .  .  .  .  .  .  .  80
 +
      4.2.2.2.        ErroredPDU .  .  .  .  .  .  .  .  .  .  .  .  80
 +
      4.2.2.3.        FlowSpec & RFlowSpec  .  .  .  .  .  .  .  .  81
 +
      4.2.2.4.        FreeHIDs  .  .  .  .  .  .  .  .  .  .  .  .  84
 +
      4.2.2.5.        Group & RGroup  .  .  .  .  .  .  .  .  .  .  85
 +
      4.2.2.6.        HID & RHID .  .  .  .  .  .  .  .  .  .  .  .  86
 +
      4.2.2.7.        MulticastAddress .  .  .  .  .  .  .  .  .  .  86
 +
      4.2.2.8.        Name & RName  .  .  .  .  .  .  .  .  .  .  .  87
 +
      4.2.2.9.        NextHopIPAddress .  .  .  .  .  .  .  .  .  .  88
 +
      4.2.2.10.        Origin  .  .  .  .  .  .  .  .  .  .  .  .  .  88
 +
      4.2.2.11.        OriginTimestamp  .  .  .  .  .  .  .  .  .  .  89
 +
      4.2.2.12.        ReasonCode .  .  .  .  .  .  .  .  .  .  .  .  89
 +
      4.2.2.13.        RecordRoute  .  .  .  .  .  .  .  .  .  .  .  94
 +
      4.2.2.14.        SrcRoute  .  .  .  .  .  .  .  .  .  .  .  .  95
 +
      4.2.2.15.        Target and TargetList  .  .  .  .  .  .  .  .  96
 +
      4.2.2.16.        UserData  .  .  .  .  .  .  .  .  .  .  .  .  98
 +
      4.2.3.        ST Control Message PDUs  .  .  .  .  .  .  .  .  99
 +
      4.2.3.1.        ACCEPT  .  .  .  .  .  .  .  .  .  .  .  .  . 100
 +
      4.2.3.2.        ACK  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
 +
      4.2.3.3.        CHANGE-REQUEST  .  .  .  .  .  .  .  .  .  . 103
 +
      4.2.3.4.        CHANGE  .  .  .  .  .  .  .  .  .  .  .  .  . 104
 +
      4.2.3.5.        CONNECT .  .  .  .  .  .  .  .  .  .  .  .  . 105
 +
      4.2.3.6.        DISCONNECT .  .  .  .  .  .  .  .  .  .  .  . 110
 +
      4.2.3.7.        ERROR-IN-REQUEST .  .  .  .  .  .  .  .  .  . 111
 +
      4.2.3.8.        ERROR-IN-RESPONSE  .  .  .  .  .  .  .  .  . 112
 +
      4.2.3.9.        HELLO  .  .  .  .  .  .  .  .  .  .  .  .  . 113
 +
      4.2.3.10.        HID-APPROVE  .  .  .  .  .  .  .  .  .  .  . 114
 +
      4.2.3.11.        HID-CHANGE-REQUEST  .  .  .  .  .  .  .  .  . 115
  
 +
      4.2.3.12.        HID-CHANGE .  .  .  .  .  .  .  .  .  .  .  . 116
 +
      4.2.3.13.        HID-REJECT .  .  .  .  .  .  .  .  .  .  .  . 118
 +
      4.2.3.14.        NOTIFY  .  .  .  .  .  .  .  .  .  .  .  .  . 120
 +
      4.2.3.15.        REFUSE  .  .  .  .  .  .  .  .  .  .  .  .  . 122
 +
      4.2.3.16.        STATUS  .  .  .  .  .  .  .  .  .  .  .  .  . 124
 +
      4.2.3.17.        STATUS-RESPONSE  .  .  .  .  .  .  .  .  .  . 126
 +
      4.3.      Suggested Protocol Constants .  .  .  .  .  .  .  . 127
  
 +
      5.      Areas Not Addressed .  .  .  .  .  .  .  .  .  .  .  . 131
  
 +
      6.      Glossary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135
  
 +
      7.      References .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
  
 +
      8.      Security Considerations.  .  .  .  .  .  .  .  .  .  . 144
  
 +
      9.      Authors' Addresses  .  .  .  .  .  .  .  .  .  .  .  . 145
  
 +
      Appendix 1.      Data Notations  .  .  .  .  .  .  .  .  .  . 147
  
 +
1.2.      List of Figures
  
 +
      Figure 1.    Protocol Relationships  .  .  .  .  .  .  .  .  .  6
 +
      Figure 2.    Topology Used in Protocol Exchange Diagrams  .  .  16
 +
      Figure 3.    Virtual Link Identifiers for SCMP Messages  .  .  16
 +
      Figure 4.    HIDs Assigned for ST User Packets  .  .  .  .  .  18
 +
      Figure 5.    Origin Sending CONNECT Message  .  .  .  .  .  .  21
 +
      Figure 6.    CONNECT Processing by an Intermediate Agent  .  .  22
 +
      Figure 7.    CONNECT Processing by the Target .  .  .  .  .  .  24
 +
      Figure 8.    ACCEPT Processing by an Intermediate Agent  .  .  25
 +
      Figure 9.    ACCEPT Processing by the Origin  .  .  .  .  .  .  26
 +
      Figure 10.  Sending REFUSE Message  .  .  .  .  .  .  .  .  .  28
 +
      Figure 11.  Routing Around a Failure  .  .  .  .  .  .  .  .  29
 +
      Figure 12.  Addition of Another Target .  .  .  .  .  .  .  .  32
 +
      Figure 13.  Origin Removing a Target  .  .  .  .  .  .  .  .  34
 +
      Figure 14.  Target Deleting Itself  .  .  .  .  .  .  .  .  .  35
 +
      Figure 15.  CONNECT Retransmission after a Timeout .  .  .  .  38
 +
      Figure 16.  Processing NOTIFY Messages .  .  .  .  .  .  .  .  43
 +
      Figure 17.  Source Routing Option  .  .  .  .  .  .  .  .  .  47
 +
      Figure 18.  Typical HID Negotiation (No Multicasting) .  .  .  60
 +
      Figure 19.  Multicast HID Negotiation  .  .  .  .  .  .  .  .  61
 +
      Figure 20.  Multicast HID Re-Negotiation          .  .  .  .  62
 +
      Figure 21.  ST Header  .  .  .  .  .  .  .  .  .  .  .  .  .  75
 +
      Figure 22.  ST Control Message Format  .  .  .  .  .  .  .  .  77
 +
      Figure 23.  ErroredPDU  .  .  .  .  .  .  .  .  .  .  .  .  .  80
 +
      Figure 24.  FlowSpec & RFlowSpec .  .  .  .  .  .  .  .  .  .  81
 +
      Figure 25.  FreeHIDs .  .  .  .  .  .  .  .  .  .  .  .  .  .  85
 +
      Figure 26.  Group & RGroup .  .  .  .  .  .  .  .  .  .  .  .  85
 +
      Figure 27.  HID & RHID  .  .  .  .  .  .  .  .  .  .  .  .  .  86
 +
      Figure 28.  MulticastAddress  .  .  .  .  .  .  .  .  .  .  .  86
 +
      Figure 29.  Name & RName  .  .  .  .  .  .  .  .  .  .  .  .  87
 +
      Figure 30.  NextHopIPAddress  .  .  .  .  .  .  .  .  .  .  .  88
  
 +
      Figure 31.  Origin  .  .  .  .  .  .  .  .  .  .  .  .  .  .  88
 +
      Figure 32.  OriginTimestamp  .  .  .  .  .  .  .  .  .  .  .  89
 +
      Figure 33.  ReasonCode  .  .  .  .  .  .  .  .  .  .  .  .  .  89
 +
      Figure 34.  RecordRoute .  .  .  .  .  .  .  .  .  .  .  .  .  94
 +
      Figure 35.  SrcRoute .  .  .  .  .  .  .  .  .  .  .  .  .  .  95
 +
      Figure 36.  Target  .  .  .  .  .  .  .  .  .  .  .  .  .  .  97
 +
      Figure 37.  TargetList  .  .  .  .  .  .  .  .  .  .  .  .  .  97
 +
      Figure 38.  UserData .  .  .  .  .  .  .  .  .  .  .  .  .  .  98
 +
      Figure 39.  ACCEPT Control Message  .  .  .  .  .  .  .  .  . 101
 +
      Figure 40.  ACK Control Message  .  .  .  .  .  .  .  .  .  . 102
 +
      Figure 41.  CHANGE-REQUEST Control Message  .  .  .  .  .  . 103
 +
      Figure 42.  CHANGE Control Message  .  .  .  .  .  .  .  .  . 105
 +
      Figure 43.  CONNECT Control Message .  .  .  .  .  .  .  .  . 109
 +
      Figure 44.  DISCONNECT Control Message .  .  .  .  .  .  .  . 110
 +
      Figure 45.  ERROR-IN-REQUEST Control Message .  .  .  .  .  . 111
 +
      Figure 46.  ERROR-IN-RESPONSE Control Message  .  .  .  .  . 112
 +
      Figure 47.  HELLO Control Message  .  .  .  .  .  .  .  .  . 113
 +
      Figure 48.  HID-APPROVE Control Message  .  .  .  .  .  .  . 114
 +
      Figure 49.  HID-CHANGE-REQUEST Control Message  .  .  .  .  . 115
 +
      Figure 50.  HID-CHANGE Control Message .  .  .  .  .  .  .  . 117
 +
      Figure 51.  HID-REJECT Control Message .  .  .  .  .  .  .  . 119
 +
      Figure 52.  NOTIFY Control Message  .  .  .  .  .  .  .  .  . 121
 +
      Figure 53.  REFUSE Control Message  .  .  .  .  .  .  .  .  . 123
 +
      Figure 54.  STATUS Control Message  .  .  .  .  .  .  .  .  . 125
 +
      Figure 55.  STATUS-RESPONSE Control Message  .  .  .  .  .  . 126
 +
      Figure 56.  Transmission Order of Bytes  .  .  .  .  .  .  . 147
 +
      Figure 57.  Significance of Bits .  .  .  .  .  .  .  .  .  . 147
  
 +
+--------------------+
 +
| Conference Control |
 +
+--------------------+
 +
                |
 +
+-------+ +-------+ |
 +
| Video | | Voice | | +-----+ +------+ +-----+    +-----+ Application
 +
| Appl  | | Appl  | | | SNMP| |Telnet| | FTP | ... |    |    Layer
 +
+-------+ +-------+ | +-----+ +------+ +-----+    +-----+
 +
|        |      |    |        |    |            |
 +
V        V      |    |        |    |            |  ------------
 +
+-----+  +-----+  |    |        |    |            |
 +
| PVP |  | NVP |  |    |        |    |            |
 +
+-----+  +-----+  +    |        |    |            |
 +
  |  \      | \    \    |        |    |            |
 +
  |    +-----|--+-----+  |        |    |            |
 +
  |    Appl.|control  V  V        V    V            V
 +
  | ST  data |        +-----+    +-------+        +-----+
 +
  | & control|        | UDP |    |  TCP  |    ... |    | Transport
 +
  |          |        +-----+    +-------+        +-----+  Layer
 +
  |        /|          / | \      / / |          / /|
 +
  |\      / |  +------+--|--\-----+-/--|--- ... -+ / |
 +
  | \    /  |  |        |  \    /  |          /  |
 +
  |  \  /  |  |        |    \  +----|--- ... -+  |  -----------
 +
  |  \ /    |  |        |    \ /    |            |
 +
  |    V    |  |        |      V      |            |
 +
  | +------+ |  |        |  +------+  |  +------+  |
 +
  | | SCMP | |  |        |  | ICMP |  |  | IGMP |  |    Internet
 +
  | +------+ |  |        |  +------+  |  +------+  |    Layer
 +
  |    |    |  |        |      |      |      |      |
 +
  V    V    V  V        V      V      V      V      V
 +
+-----------------+  +-----------------------------------+
 +
| STream protocol |->|      Internet    Protocol        |
 +
+-----------------+  +-----------------------------------+
 +
            | \  / |
 +
            |  \ /  |
 +
            |  X  |                                  ------------
 +
            |  / \  |
 +
            | /  \ |
 +
            VV    VV
 +
+----------------+  +----------------+
 +
| (Sub-) Network |...| (Sub-) Network |                  (Sub-)Network
 +
|    Protocol    |  |    Protocol    |                    Layer
 +
+----------------+  +----------------+
 +
 +
                Figure 1.  Protocol Relationships
  
 +
== Introduction ==
  
 +
ST has been developed to support efficient delivery of streams of
 +
packets to either single or multiple destinations in applications
 +
requiring guaranteed data rates and controlled delay characteristics.
 +
The motivation for the original protocol was that IP [2] [15] did not
 +
provide the delay and data rate characteristics necessary to support
 +
voice applications.
  
 +
ST is an internet protocol at the same layer as IP, see Figure 1.  ST
 +
differs from IP in that IP, as originally envisioned, did not require
 +
routers (or intermediate systems) to maintain state information
 +
describing the streams of packets flowing through them.  ST
 +
incorporates the concept of streams across an internet.  Every
 +
intervening ST entity maintains state information for each stream
 +
that passes through it.  The stream state includes forwarding
 +
information, including multicast support for efficiency, and resource
 +
information, which allows network or link bandwidth and queues to be
 +
assigned to a specific stream.  This pre-allocation of resources
 +
allows data packets to be forwarded with low delay, low overhead, and
 +
a low probability of loss due to congestion.  The characteristics of
 +
a stream, such as the number and location of the endpoints, and the
 +
bandwidth required, may be modified during the lifetime of the
 +
stream.  This allows ST to give a real time application the
 +
guaranteed and predictable communication characteristics it requires,
 +
and is a good vehicle to support an application whose communications
 +
requirements are relatively predictable.
  
 +
ST proved quite useful in several early experiments that involved
 +
voice conferences in the Internet.  Since that time, ST has also been
 +
used to support point-to-point streams that include both video and
 +
voice.  Recently, multimedia conferencing applications have been
 +
developed that need to exchange real-time voice, video, and pointer
 +
data in a multi-site conferencing environment.  Multimedia
 +
conferencing across an internet is an application for which ST
 +
provides ideal support.  Simulation and wargaming applications [14]
 +
also place similar requirements on the communication system.  Other
 +
applications may include scientific visualization between a number of
 +
workstations and one or more remote supercomputers, and the
 +
collection and distribution of real-time sensor data from remote
 +
sensor platforms.  ST may also be useful to support activities that
 +
are currently supported by IP, such as bulk file transfer using TCP.
  
 +
Transport protocols above ST include the Packet Video Protocol (PVP)
 +
[5] and the Network Voice Protocol (NVP) [4], which are end-to-end
 +
protocols used directly by applications.  Other transport layer
 +
protocols that may be used over ST include TCP [16], VMTP [3], etc.
 +
They provide the user interface, flow control, and packet ordering.
 +
This specification does not describe these higher layer protocols.
  
CIP Working Group                                             
+
2.1.      Major Differences Between ST and ST-II
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  1.1.      Table of Contents
 
 
 
                Status of this Memo .  .  .  .  .  .  .  .  .  .  .  .  1
 
        1.      Abstract  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
 
        1.1.      Table of Contents  .  .  .  .  .  .  .  .  .  .  .  2
 
        1.2.      List of Figures  .  .  .  .  .  .  .  .  .  .  .  .  4
 
 
 
        2.      Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7
 
        2.1.      Major Differences Between ST and ST-II   .  .  .  .  8
 
        2.2.      Concepts and Terminology  .  .  .  .  .  .  .  .  .  9
 
        2.3.      Relationship Between Applications and ST .  .  .  .  11
 
        2.4.      ST Control Message Protocol  .  .  .  .  .  .  .  .  12
 
        2.5.      Flow Specifications .  .  .  .  .  .  .  .  .  .  .  14
 
 
 
        3.      ST Control Message Protocol Functional Description  .  17
 
        3.1.      Stream Setup  .  .  .  .  .  .  .  .  .  .  .  .  .  18
 
        3.1.1.        Initial Setup at the Origin  .  .  .  .  .  .  .  18
 
        3.1.2.        Invoking the Routing Function  .  .  .  .  .  .  19
 
        3.1.3.        Reserving Resources .  .  .  .  .  .  .  .  .  .  19
 
        3.1.4.        Sending CONNECT Messages  .  .  .  .  .  .  .  .  20
 
        3.1.5.        CONNECT Processing by an Intermediate Agent .  .  22
 
        3.1.6.        Setup at the Targets  .  .  .  .  .  .  .  .  .  23
 
        3.1.7.        ACCEPT Processing by an Intermediate Agent  .  .  24
 
        3.1.8.        ACCEPT Processing by the Origin .  .  .  .  .  .  26
 
        3.1.9.        Processing a REFUSE Message  .  .  .  .  .  .  .  27
 
        3.2.      Data Transfer .  .  .  .  .  .  .  .  .  .  .  .  .  30
 
        3.3.      Modifying an Existing Stream .  .  .  .  .  .  .  .  31
 
        3.3.1.        Adding a Target  .  .  .  .  .  .  .  .  .  .  .  31
 
        3.3.2.        The Origin Removing a Target .  .  .  .  .  .  .  33
 
        3.3.3.        A Target Deleting Itself  .  .  .  .  .  .  .  .  35
 
        3.3.4.        Changing the FlowSpec  .  .  .  .  .  .  .  .  .  36
 
        3.4.      Stream Tear Down .  .  .  .  .  .  .  .  .  .  .  .  36
 
        3.5.      Exceptional Cases  .  .  .  .  .  .  .  .  .  .  .  37
 
        3.5.1.        Setup Failure due to CONNECT Timeout  .  .  .  .  37
 
        3.5.2.        Problems due to Routing Inconsistency .  .  .  .  38
 
        3.5.3.        Setup Failure due to a Routing Failure  .  .  .  39
 
        3.5.4.        Problems in Reserving Resources .  .  .  .  .  .  41
 
        3.5.5.        Setup Failure due to ACCEPT Timeout  .  .  .  .  41
 
        3.5.6.        Problems Caused by CHANGE Messages .  .  .  .  .  42
 
        3.5.7.        Notification of Changes Forced by Failures  .  .  42
 
        3.6.      Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  44
 
        3.6.1.        HID Field Option .  .  .  .  .  .  .  .  .  .  .  44
 
        3.6.2.        PTP Option .  .  .  .  .  .  .  .  .  .  .  .  .  44
 
        3.6.3.        FDx Option .  .  .  .  .  .  .  .  .  .  .  .  .  45
 
        3.6.4.        NoRecovery Option  .  .  .  .  .  .  .  .  .  .  46
 
        3.6.5.        RevChrg Option  .  .  .  .  .  .  .  .  .  .  .  46
 
        3.6.6.        Source Route Option .  .  .  .  .  .  .  .  .  .  46
 
        3.7.      Ancillary Functions .  .  .  .  .  .  .  .  .  .  .  48
 
        3.7.1.        Failure Detection  .  .  .  .  .  .  .  .  .  .  48
 
        3.7.1.1.        Network Failures .  .  .  .  .  .  .  .  .  .  48
 
        3.7.1.2.        Detecting ST Stream Failures .  .  .  .  .  .  49
 
        3.7.1.3.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  51
 
 
 
 
 
CIP Working Group                                             
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        3.7.2.        Failure Recovery .  .  .  .  .  .  .  .  .  .  .  51
 
        3.7.2.1.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  55
 
        3.7.3.        A Group of Streams  .  .  .  .  .  .  .  .  .  .  56
 
        3.7.3.1.        Group Name Generator  .  .  .  .  .  .  .  .  57
 
        3.7.3.2.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  57
 
        3.7.4.        HID Negotiation  .  .  .  .  .  .  .  .  .  .  .  58
 
        3.7.4.1.        Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  64
 
        3.7.5.        IP Encapsulation of ST .  .  .  .  .  .  .  .  .  64
 
        3.7.5.1.        IP Multicasting  .  .  .  .  .  .  .  .  .  .  65
 
        3.7.6.        Retransmission  .  .  .  .  .  .  .  .  .  .  .  66
 
        3.7.7.        Routing .  .  .  .  .  .  .  .  .  .  .  .  .  .  67
 
        3.7.8.        Security  .  .  .  .  .  .  .  .  .  .  .  .  .  67
 
        3.8.      ST Service Interfaces  .  .  .  .  .  .  .  .  .  .  68
 
        3.8.1.        Access to Routing Information  .  .  .  .  .  .  69
 
        3.8.2.        Access to Network Layer Resource Reservation  .  70
 
        3.8.3.        Network Layer Services Utilized .  .  .  .  .  .  71
 
        3.8.4.        IP Services Utilized  .  .  .  .  .  .  .  .  .  71
 
        3.8.5.        ST Layer Services Provided  .  .  .  .  .  .  .  72
 
  
        4.      ST Protocol Data Unit Descriptions .  .  .  .  .  .  .  75
+
  ST-II supports a wider variety of applications than did the
        4.1.      Data Packets  .  .  .  .  .  .  .  .  .  .  .  .  .  76
+
  original ST.  The differences between ST and ST-II are fairly
        4.2.      ST Control Message Protocol Descriptions .  .  .  77
+
  straight forward yet provide great improvementsFour of the more
        4.2.1.        ST Control Messages .  .  .  .  .  .  .  .  .  .  79
+
  notable differences are:
        4.2.2.        Common SCMP Elements  .  .  .  .  .  .  .  .  .  80
 
        4.2.2.1.        DetectorIPAddress  .  .  .  .  .  .  .  .  .  80
 
        4.2.2.2.        ErroredPDU .  .  .  .  .  .  .  .  .  .  .  .  80
 
        4.2.2.3.        FlowSpec & RFlowSpec  .  .  .  .  .  .  .  .  81
 
        4.2.2.4.        FreeHIDs  .  .  .  .  .  .  .  .  .  .  .  .  84
 
        4.2.2.5.        Group & RGroup  .  .  .  .  .  .  .  .  .  .  85
 
        4.2.2.6.        HID & RHID .  .  .  .  .  .  .  .  .  .  .  .  86
 
        4.2.2.7.        MulticastAddress .  .  .  .  .  .  .  .  .  .  86
 
        4.2.2.8.        Name & RName  .  .  .  .  .  .  .  .  .  .  .  87
 
        4.2.2.9.        NextHopIPAddress .  .  .  .  .  .  .  .  .  .  88
 
        4.2.2.10.        Origin  .  .  .  .  .  .  .  .  .  .  .  .  .  88
 
        4.2.2.11.        OriginTimestamp  .  .  .  .  .  .  .  .  .  .  89
 
        4.2.2.12.        ReasonCode .  .  .  .  .  .  .  .  .  .  .  .  89
 
        4.2.2.13.        RecordRoute  .  .  .  .  .  .  .  .  .  .  .  94
 
        4.2.2.14.        SrcRoute  .  .  .  .  .  .  .  .  .  .  .  .  95
 
        4.2.2.15.        Target and TargetList  .  .  .  .  .  .  .  .  96
 
        4.2.2.16.        UserData  .  .  .  .  .  .  .  .  .  .  .  .  98
 
        4.2.3.        ST Control Message PDUs  .  .  .  .  .  .  .  .  99
 
        4.2.3.1.        ACCEPT  .  .  .  .  .  .  .  .  .  .  .  .  . 100
 
        4.2.3.2.        ACK  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
 
        4.2.3.3.        CHANGE-REQUEST  .  .  .  .  .  .  .  .  .  . 103
 
        4.2.3.4.        CHANGE  .  .  .  .  .  .  .  .  .  .  .  .  . 104
 
        4.2.3.5.        CONNECT .  .  .  .  .  .  .  .  .  .  .  .  . 105
 
        4.2.3.6.        DISCONNECT .  .  .  .  .  .  .  .  .  .  .  . 110
 
        4.2.3.7.        ERROR-IN-REQUEST .  .  .  .  .  .  .  .  .  . 111
 
        4.2.3.8.        ERROR-IN-RESPONSE  .  .  .  .  .  .  .  .  . 112
 
        4.2.3.9.        HELLO  .  .  .  .  .  .  .  .  .  .  .  .  . 113
 
        4.2.3.10.        HID-APPROVE  .  .  .  .  .  .  .  .  .  . 114
 
        4.2.3.11.        HID-CHANGE-REQUEST  .  .  .  .  .  .  .  .  . 115
 
  
 +
      1  ST-II is decoupled from the Access Controller (AC).  The
 +
        AC, as well as providing a rudimentary access control
 +
        function, also served as a centralized repository and
 +
        distributor of the conference information.  If an AC is
 +
        necessary, it should be an entity in a higher layer
 +
        protocol.  A large variety of applications such as
 +
        conferencing, distributed simulations, and wargaming can
 +
        be run without an explicit AC.
  
CIP Working Group                                             
+
      2  The basic stream construct of ST-II is a directed tree
 +
        carrying traffic away from a source to all the
 +
        destinations, rather than the original ST's omniplex
 +
        structure.  For example, a conference is composed of a
 +
        number of such trees, one for traffic from each
 +
        participant.  Although there are more (simplex) streams in
 +
        ST-II, each is much simpler to manage, so the aggregate is
 +
        much simpler.  This change has a minimal impact on the
 +
        application.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      3  ST-II defines a number of the robustness and recovery
 +
        mechanisms that were left undefined in the original ST
 +
        specification.  In case of a network or ST Agent failure,
 +
        a stream may optionally be repaired automatically (i.e.,
 +
        without intervention from the user or the application)
 +
        using a pruned depth first search starting at the ST Agent
 +
        immediately preceding the failure.
  
 +
      4  ST-II does not make an inherent distinction between
 +
        streams connecting only two communicants and streams among
 +
        an arbitrary number of communicants.
  
        4.2.3.12.        HID-CHANGE .  .  .  .  .  .  .  .  .  .  . 116
+
  This memo is the specification for the ST-II ProtocolSince
        4.2.3.13.        HID-REJECT .  .  .  .  .  .  .  .  .  .  .  . 118
+
  there should be no ambiguity between the original ST specification
        4.2.3.14.        NOTIFY  .  .  .  .  .  .  .  .  .  .  .  .  . 120
+
  and the specification herein, the protocol is simply called ST
        4.2.3.15.        REFUSE  .  .  .  .  .  .  .  .  .  .  .  .  . 122
+
  hereafter.
        4.2.3.16.        STATUS  .  .  .  .  .  .  .  .  .  .  .  .  . 124
 
        4.2.3.17.        STATUS-RESPONSE  .  .  .  .  .  .  .  .  .  . 126
 
        4.3.      Suggested Protocol Constants .  .  .  .  .  .  .  . 127
 
  
        5.     Areas Not Addressed . .  .  .  .  .  .  .  .  .  .  . 131
+
  ST is the protocol used by ST entities to exchange information.
 +
  The same protocol is used for communication among all ST entities,
 +
  whether they communicate with a higher layer protocol or forward
 +
  ST packets between attached networks.
  
        6.      Glossary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135
+
  The remainder of this section gives a brief overview of the ST
 +
  ProtocolSection 3 (page 17) provides a detailed description of
 +
  the operations required by the protocolSection 4 (page 75)
 +
  provides descriptions of the ST Protocol Data Units exchanged
  
        7.      References .  .  .  .  . .  .  .  .  .  .  .  .  .  . 143
+
  between ST entitiesIssues that have not yet been fully
 +
  addressed are presented in Section 5 (page 131)A glossary and
 +
  list of references are in Sections 6 (page 135) and 7 (page 143),
 +
  respectively.
  
        8.      Security Considerations.  .  .  .  .  .  .  .  .  .  . 144
+
  This memo also defines "subsets" of ST that can be implementedA
 +
  subsetted implementation does not have full ST functionality, but
 +
  it can interoperate with other similarly subsetted
 +
  implementations, or with a full implementation, in a predictable
 +
  and consistent mannerThis approach allows an implementation to
 +
  be built and provide service with minimum effort, and gives it an
 +
  immediate and well defined growth path.
  
        9.     Authors' Addresses  . .  .  .  .  .  .  .  .  .  .  . 145
+
2.2.       Concepts and Terminology
  
        Appendix 1.      Data Notations  .  .  .  .  .  .  .  .  .  . 147
+
  The ST packet header is not constrained to be compatible with the
 +
  IP packet header, except for the IP Version Number (the first four
 +
  bits) that is used to distinguish ST packets (IP Version 5) from
 +
  IP packets (IP Version 4)The ST packets, or protocol data units
 +
  (PDUs), can be encapsulated in IP either to provide connectivity
 +
  (possibly with degraded service) across portions of an internet
 +
  that do not provide support for ST, or to allow access to services
 +
  such as security that are not provided directly by ST.
  
   1.2.       List of Figures
+
   An internet entity that implements the ST Protocol is called an
 +
  "ST Agent". We refer to two kinds of ST agents:  "host ST
 +
  agents", also called "host agents" and "intermediate ST agents",
 +
  also called "intermediate agents". The ST agents functioning as
 +
  hosts are sourcing or sinking data to a higher layer protocol or
 +
  application, while ST agents functioning as intermediate agents
 +
  are forwarding data between directly attached networks.  This
 +
  distinction is not part of the protocol, but is used for
 +
  conceptual purposes only.  Indeed, a given ST agent may be
 +
  simultaneously performing both host and intermediate roles.  Every
 +
  ST agent should be capable of delivering packets to a higher layer
 +
  protocol.  Every ST agent can replicate ST data packets as
 +
  necessary for multi-destination delivery, and is able to send
 +
  packets whether received from a network interface or a higher
 +
  layer protocol.  There are no other kinds of ST agents.
  
        Figure 1.    Protocol Relationships  .  .  .  .  .  .  .  .  .  6
+
   ST provides applications with an end-to-end flow oriented service
        Figure 2.    Topology Used in Protocol Exchange Diagrams  .  .  16
+
   across an internetThis service is implemented using objects
        Figure 3.    Virtual Link Identifiers for SCMP Messages  .  .  16
+
   called "streams"ST data packets are not considered to be
        Figure 4.   HIDs Assigned for ST User Packets  .  .  .  .  .  18
+
   totally independent as are IP data packetsThey are transmitted
        Figure 5.   Origin Sending CONNECT Message  .  .  .  .  .  .  21
+
   only as part of a point-to-point or point-to-multi- point stream.
        Figure 6.    CONNECT Processing by an Intermediate Agent  .  22
+
  ST creates a stream during a setup phase before data is
        Figure 7.   CONNECT Processing by the Target .  .  .  .  .  24
+
  transmittedDuring the setup phase, routes are selected and
        Figure 8.   ACCEPT Processing by an Intermediate Agent  .  25
+
  internetwork resources are reservedExcept for explicit changes
        Figure 9.   ACCEPT Processing by the Origin  .  .  .  .  .  .  26
+
  to the stream, the routes remain in effect until the stream is
        Figure 10.  Sending REFUSE Message  .  .  .  .  .  .  .  .  .  28
+
  explicitly torn down.
        Figure 11.  Routing Around a Failure  .  .  .  .  .  .  .  .  29
 
        Figure 12.  Addition of Another Target .  .  .  .  .  .  .  .  32
 
        Figure 13.  Origin Removing a Target  .  .  .  .  .  .  .  .  34
 
        Figure 14.  Target Deleting Itself  .  .  .  .  .  .  .  .  .  35
 
        Figure 15.  CONNECT Retransmission after a Timeout .  .  .  .  38
 
        Figure 16.  Processing NOTIFY Messages .  .  .  .  .  .  .  .  43
 
        Figure 17.  Source Routing Option  .  .  .  .  .  .  .  .  .  47
 
        Figure 18.  Typical HID Negotiation (No Multicasting) .  .  .  60
 
        Figure 19.  Multicast HID Negotiation  .  .  .  .  .  .  .  .  61
 
        Figure 20.  Multicast HID Re-Negotiation          .  .  . .  62
 
        Figure 21.  ST Header  .  .  .  .  .  .  .  .  .  .  .  .  .  75
 
        Figure 22.   ST Control Message Format .  .  .  .  .  .  .  .  77
 
        Figure 23.   ErroredPDU .  .  .  .  .  .  .  .  .  .  .  .  .  80
 
        Figure 24.  FlowSpec & RFlowSpec .  .  .  .  .  .  .  .  .  .  81
 
        Figure 25.  FreeHIDs .  .  .  .  .  .  .  .  .  .  .  .  .  .  85
 
        Figure 26.  Group & RGroup .  .  .  .  .  .  .  .  .  .  .  .  85
 
        Figure 27.  HID & RHID  .  .  .  .  .  .  .  .  .  .  .  .  .  86
 
        Figure 28.  MulticastAddress  .  .  .  .  .  .  .  . .  .  .  86
 
        Figure 29.  Name & RName  .  .  .  .  .  .  .  .  .  .  .  .  87
 
        Figure 30.  NextHopIPAddress  .  .  .  .  .  .  .  .  .  .  .  88
 
  
 +
  An ST stream is:
  
CIP Working Group                                             
+
      o  the set of paths that data generated by an application
 +
        entity traverses on its way to its peer application
 +
        entity(s) that receive it,
  
RFC 1190                Internet Stream Protocol            October 1990
+
      o  the resources allocated to support that transmission of
 +
        data, and
  
 +
      o  the state information that is maintained describing that
 +
        transmission of data.
  
        Figure 31.  Origin  .  .  .  .  .  .  .  .  . .  .  .  .  .  88
+
  Each stream is identified by a globally unique "Name"; see
        Figure 32.  OriginTimestamp  .  .  .  . . . .  .  .  .  89
+
  Section 4.2.2.8 (page 87)The Name is specified in ST control
        Figure 33.   ReasonCode .  .  .  .  .  .  .  .  .  .  .  .  .  89
+
  operations, but is not used in ST data packetsA set of streams
        Figure 34.  RecordRoute .  .  .  .  .  .  .  .  .  .  .  .  .  94
+
  may be related as members of a larger aggregate called a "group".
        Figure 35.  SrcRoute .  .  .  .  .  .  .  .  .  .  .  .  .  .  95
+
  A group is identified by a "Group Name"; see Section 3.7.3 (page
        Figure 36.  Target  .  .  .  .  .  .  .  .  .  .  .  .  .  .  97
+
  56).
        Figure 37.  TargetList  .  .  .  .  .  .  .  .  .  .  .  .  .  97
 
        Figure 38.  UserData .  .  .  .  .  .  .  .  .  .  .  .  .  .  98
 
        Figure 39.  ACCEPT Control Message  .  .  .  .  .  .  .  .  . 101
 
        Figure 40.  ACK Control Message  .  .  .  .  .  .  .  .  .  . 102
 
        Figure 41.  CHANGE-REQUEST Control Message  .  .  .  .  .  . 103
 
        Figure 42.  CHANGE Control Message  .  .  .  .  .  .  .  .  . 105
 
        Figure 43.  CONNECT Control Message .  .  .  .  .  .  .  .  . 109
 
        Figure 44.  DISCONNECT Control Message .  .  .  .  .  .  .  . 110
 
        Figure 45.  ERROR-IN-REQUEST Control Message .  .  .  .  .  . 111
 
        Figure 46.  ERROR-IN-RESPONSE Control Message  .  .  .  .  . 112
 
        Figure 47.  HELLO Control Message  .  .  .  .  .  .  .  .  . 113
 
        Figure 48.  HID-APPROVE Control Message  .  .  .  .  .  .  . 114
 
        Figure 49.  HID-CHANGE-REQUEST Control Message  .  .  .  .  . 115
 
        Figure 50.  HID-CHANGE Control Message .  .  .  .  .  .  .  . 117
 
        Figure 51.  HID-REJECT Control Message .  .  .  .  .  .  .  . 119
 
        Figure 52.  NOTIFY Control Message  .  . .  .  .  .  .  .  . 121
 
        Figure 53.  REFUSE Control Message  . . . .  .  .  .  .  . 123
 
        Figure 54.  STATUS Control Message  .  .  .  .  .  .  .  .  . 125
 
        Figure 55.  STATUS-RESPONSE Control Message  .  .  .  .  .  . 126
 
        Figure 56.   Transmission Order of Bytes  .  .  .  .  .  .  . 147
 
        Figure 57.  Significance of Bits .  .  .  .  .  .  .  .  .  . 147
 
  
 +
  The end-users of a stream are called the "participants" in the
 +
  stream.  Data travels in a single direction through any given
 +
  stream.  The host agent that transmits the data into the stream is
 +
  called the "origin", and the host agents that receive the data are
 +
  called the "targets".  Thus, for any stream one participant is the
 +
  origin and the others are the targets.
  
 +
  A stream is "multi-destination simplex" since data travels across
 +
  it in only one direction:  from the origin to the targets.  A
 +
  stream can be viewed as a directed tree in which the origin is the
 +
  root, all the branches are directed away from the root toward the
 +
  targets, which are the leaves.  A "hop" is an edge of that tree.
 +
  The ST agent that is on the end of an edge in the direction toward
 +
  the origin is called the "previous-hop ST agent", or the
 +
  "previous-hop".  The ST agents that are one hop away from a
 +
  previous-hop ST agent in the direction toward the targets are
 +
  called the "next-hop ST agents", or the "next-hops".  It is
 +
  possible that multiple edges between a previous-hop and several
 +
  next-hops are actually implemented by a network level multicast
 +
  group.
  
 +
  Packets travel across a hop for one of two purposes:  data or
 +
  control.  For ST data packet handling, hops are marked by "Hop
 +
  IDentifiers" (HIDs) used for efficient forwarding instead of the
 +
  stream's Name.  A HID is negotiated among several agents so that
 +
  data forwarding can be done efficiently on both a point-to-point
 +
  and multicast basis.  All control message exchange is done on a
 +
  point-to-point basis between a pair of agents.  For control
 +
  message handling, Virtual Link Identifiers are used to quickly
 +
  dispatch the control messages to the proper stream's state
 +
  machine.
  
 +
  ST requires routing decisions to be made at several points in the
 +
  stream setup and management process.  ST assumes that an
 +
  appropriate routing algorithm exists to which ST has access; see
 +
  Section 3.8.1 (page 69).  However, routing is considered to be a
 +
  separate issue.  Thus neither the routing algorithm nor its
 +
  implementation is specified here.  A routing algorithm may attempt
 +
  to minimize the number of hops to the target(s), or it may be more
 +
  intelligent and attempt to minimize the total internet resources
 +
  consumed.  ST operates equally well with any reasonable routing
 +
  algorithm.  The availability of a source routing option does not
 +
  eliminate the need for an appropriate routing algorithm in ST
 +
  agents.
  
 +
2.3.      Relationship Between Applications and ST
  
 +
  It is the responsibility of an ST application entity to exchange
 +
  information among its peers, usually via IP, as necessary to
 +
  determine the structure of the communication before establishing
 +
  the ST stream.  This includes:
  
 +
      o  identifying the participants,
  
 +
      o  determining which are targets for which origins,
  
 +
      o  selecting the characteristics of the data flow between any
 +
        origin and its target(s),
  
 +
      o  specifying the protocol that resides above ST,
  
 +
      o  identifying the Service Access Point (SAP), port, or
 +
        socket relevant to that protocol at every participant, and
  
 +
      o  ensuring security, if necessary.
  
 +
  The protocol layer above ST must pass such information down to the
 +
  ST protocol layer when creating a stream.
  
 +
  ST uses a flow specification, abbreviated herein as "FlowSpec", to
 +
  describe the required characteristics of a stream.  Included are
 +
  bandwidth, delay, and reliability parameters.  Additional
 +
  parameters may be included in the future in an extensible manner.
 +
  The FlowSpec describes both the desired values and their minimal
 +
  allowable values.  The ST agents thus have some freedom in
 +
  allocating their resources.  The ST agents accumulate information
 +
  that describes the characteristics of the chosen path and pass
 +
  that information to the origin and the targets of the stream.
  
 +
  ST stream setup control messages carry some information that is
 +
  not specifically relevant to ST, but is passed through the
 +
  interface to the protocol that resides above ST.  The "next
  
 +
  protocol identifier" ("NextPcol") allows ST to demultiplex streams
 +
  to a number of possible higher layer protocols.  The SAP
 +
  associated with each participant allows the higher layer protocol
 +
  to further demultiplex to a specific application entity.  A
 +
  UserData parameter is provided;  see Section 4.2.2.16 (page 98).
  
 +
2.4.      ST Control Message Protocol
  
 +
  ST agents create and manage a stream using the ST Control Message
 +
  Protocol (SCMP).  Conceptually, SCMP resides immediately above ST
 +
  (as does ICMP above IP) but is an integral part of ST.  Control
 +
  messages are used to:
  
 +
      o  create streams,
  
 +
      o  refuse creation of a stream,
  
 +
      o  delete a stream in whole or in part,
  
 +
      o  negotiate or change a stream's parameters,
  
 +
      o  tear down parts of streams as a result of router or
 +
        network failures, or transient routing inconsistencies,
 +
        and
  
 +
      o  reroute around network or component failures.
  
 +
  SCMP follows a request-response model.  SCMP reliability is
 +
  ensured through use of retransmission after timeout;  see Section
 +
  3.7.6 (page 66).
  
 +
  An ST application that will transmit data requests its local ST
 +
  agent, the origin, to create a stream.  While only the origin
 +
  requests creation of a stream, all the ST agents from the origin
 +
  to the targets participate in its creation and management.  Since
 +
  a stream is simplex, each participant that wishes to transmit data
 +
  must request that a stream be created.
  
CIP Working Group                                             
+
  An ST agent that receives an indication that a stream is being
 +
  created must:
  
RFC 1190                Internet Stream Protocol            October 1990
+
      1  negotiate a HID with the previous-hop identifying the
 +
        stream,
  
 +
      2  map the list of targets onto a set of next-hop ST agents
 +
        through the routing function,
  
  +--------------------+
+
      3 reserve the local and network resources required to
| Conference Control |
+
        support the stream,
  +--------------------+
+
 
                    |
+
      4 update the FlowSpec, and
+-------+ +-------+ |
+
 
| Video | | Voice | | +-----+ +------+ +-----+    +-----+ Application
+
      5  propagate the setup information and partitioned target
| Appl  | | Appl  | | | SNMP| |Telnet| | FTP | ... |    |    Layer
+
        list to the next-hop ST agents.
+-------+ +-------+ | +-----+ +------+ +-----+    +-----+
+
 
    |        |      |    |        |    |            |
+
  When a target receives the setup message, it must inquire from the
    V        V      |    |        |    |            |  ------------
+
  specified application process whether or not it is willing to
+-----+  +-----+  |    |        |    |            |
+
  accept the stream, and inform the origin accordingly.
| PVP |  | NVP |  |    |        |    |            |
+
 
+-----+  +-----+  +    |        |    |            |
+
   Once a stream is established, the origin can safely send data.  ST
  |  \      | \    \   |        |    |            |
+
   and its implementations are optimized to allow fast and efficient
  |    +-----|--+-----+  |        |    |            |
+
   forwarding of data packets by the ST agents using the HIDs, even
  |    Appl.|control  V V        V    V            V
+
   at the cost of adding overhead to stream creation and management.
  | ST data |        +-----+    +-------+        +-----+
+
   Specifically, the forwarding decisions, that is, determining the
  | & control|        | UDP |    |  TCP  |   ... |    | Transport
+
   set of next-hop ST agents to which a data packet belonging to a
  |          |        +-----+   +-------+        +-----+  Layer
+
   particular stream will be sent, are made during the stream setup
  |        /|          / | \      / / |          / /|
+
  phase. The shorthand HIDs are negotiated at that time, not only
  |\      / |  +------+--|--\-----+-/--|--- ... -+ / |
+
   to reduce the data packet header size, but to access efficiently
  | \    /  |  |        |  \    /  |          /  |
+
   the stream's forwarding information. When possible, network-layer
  |  \  /  |  |        |   \  +----|--- ... -+  |  -----------
+
  multicast is used to forward a data packet to multiple next-hop ST
  |  \ /   |  |        |    \ /    |            |
+
  agents across a network. Note that when network-layer multicast
  |   V    |  |        |      V      |            |
+
  is used, all members of the multicast group must participate in
  | +------+ |  |        |  +------+  |  +------+  |
+
  the negotiation of a common HID.
  | | SCMP | |  |        |  | ICMP |  |  | IGMP |  |   Internet
 
  | +------+ |  |        |  +------+ |  +------+  |    Layer
 
  |   |    |  |        |      |      |      |      |
 
  V   V    V  V        V      V      V      V      V
 
+-----------------+ +-----------------------------------+
 
| STream protocol |->|      Internet    Protocol        |
 
+-----------------+ +-----------------------------------+
 
              | \  / |
 
              |  \ /  |
 
              |  X  |                                  ------------
 
              |  / \  |
 
              | /  \ |
 
              VV    VV
 
+----------------+  +----------------+
 
| (Sub-) Network |...| (Sub-) Network |                  (Sub-)Network
 
|    Protocol    |  |    Protocol    |                    Layer
 
+----------------+  +----------------+
 
  
                    Figure 1Protocol Relationships
+
  An established stream can be modified by adding or deleting
 +
  targets, or by changing the network resources allocated to itA
 +
  stream may be torn down by either the origin or the targets.  A
 +
  target can remove itself from a stream leaving the others
 +
  unaffected.  The origin can similarly remove any subset of the
 +
  targets from its stream leaving the remainder unaffected.  An
 +
  origin can also remove all the targets from the stream and
 +
  eliminate the stream in its entirety.
  
 +
  A stream is monitored by the involved ST agents.  If they detect a
 +
  failure, they can attempt recovery.  In general, this involves
 +
  tearing down part of the stream and rebuilding it to bypass the
 +
  failed component(s).  The rebuilding always occurs from the origin
 +
  side of the failure.  The origin can optionally specify whether
 +
  recovery is to be attempted automatically by intermediate ST
 +
  agents or whether a failure should immediately be reported to the
 +
  origin.  If automatic recovery is selected but an intermediate
 +
  agent determines it cannot effect the repair, it propagates the
 +
  failure information backward until it reaches an agent that can
 +
  effect repair.  If the failure information propagates back to the
 +
  origin, then the application can decide if it should abort or
 +
  reattempt the recovery operation.
  
 +
  Although ST supports an arbitrary connection structure, we
 +
  recognize that certain stream topologies will be common and
 +
  justify special features, or options, which allow for optimized
 +
  support.  These include:
  
 +
      o  streams with only a single target (see Section 3.6.2 (page
 +
        44)), and
  
 +
      o  pairs of streams to support full duplex communication
 +
        between two points (see Section 3.6.3 (page 45)).
  
 +
  These features allow the most frequently occurring topologies to
 +
  be supported with less setup delay, with fewer control messages,
 +
  and with less overhead than the more general situations.
  
 +
2.5.      Flow Specifications
  
 +
  Real time data, such as voice and video, have predictable
 +
  characteristics and make specific demands of the networks that
 +
  must transfer it.  Specifically, the data may be transmitted in
 +
  packets of a constant size that are produced at a constant rate.
 +
  Alternatively, the bandwidth may vary, due either to variable
 +
  packet size or rate, with a predefined maximum, and perhaps a
 +
  non-zero minimum.  The variation may also be predictable based on
 +
  some model of how the data is generated.  Depending on the
 +
  equipment used to generate the data, the packet size and rate may
 +
  be negotiable.  Certain applications, such as voice, produce
 +
  packets at the given rate only some of the time.  The networks
 +
  that support real time data must add minimal delay and delay
 +
  variance, but it is expected that they will be non-zero.
  
 +
  The FlowSpec is used for three purposes.  First, it is used in the
 +
  setup message to specify the desired and minimal packet size and
 +
  rate required by the origin.  This information is used by ST
 +
  agents when they attempt to reserve the resources in the
 +
  intervening networks.  Second, when the setup message reaches the
 +
  target, the FlowSpec contains the packet size and rate that was
 +
  actually obtained along the path from the origin, and the accrued
 +
  mean delay and delay variance expected for data packets along that
 +
  path.  This information is used by the target to determine if it
 +
  wishes to accept the connection.  The target may reduce reserved
 +
  resources if it wishes to do so and if the possibility is still
 +
  available.  Third, if the target accepts the connection, it
 +
  returns the updated FlowSpec to the origin, so that the origin can
 +
  decide if it still wishes to participate in the stream with the
 +
  characteristics that were actually obtained.
  
CIP Working Group                                             
+
  When the data transmitted by stream users is generated at varying
 +
  rates, including bursts of varying rate and duration, there is an
 +
  opportunity to provide service to more subscribers by providing
 +
  guaranteed service for the average data rate of each stream, and
 +
  reserving additional network capacity, shared among all streams,
 +
  to service the bursts.  This concept has been recognized by analog
 +
  voice network providers leading to the principle of time assigned
 +
  speech interpolation (TASI) in which only the talkspurts of a
 +
  speech conversation are transmitted, and, during silence periods,
 +
  the circuit can be used to send the talkspurts of other
 +
  conversations.  The FlowSpec is intended to assist algorithms that
 +
  perform similar kinds of functions.  We do not propose such
 +
  algorithms here, but rather expect that this will be an area for
 +
  experimentation.  To allow for experiments, and a range of ways
 +
  that application traffic might be characterized, a "DutyFactor" is
 +
  included in the FlowSpec and we expect that a "burst descriptor"
 +
  will also be needed.
  
RFC 1190                Internet Stream Protocol            October 1990
+
  The FlowSpec will need to be revised as experience is gained with
 +
  connections involving numerous participants using multiple media
 +
  across heterogeneous internetworks.  We feel a change of the
 +
  FlowSpec does not necessarily require a new version of ST, it only
 +
  requires the FlowSpec version number be updated and software to
 +
  manage the new FlowSpec to be distributed.  We further suggest
 +
  that if the change to the FlowSpec involves additional information
 +
  for improved operation, such as a burst descriptor, that it be
 +
  added to the end of the FlowSpec and that the current parameters
 +
  be maintained so that obsolete software can be used to process the
 +
  current parameters with minimum modifications.
  
 +
                  ****                      ****
 +
                  *    *    ST Agent 1    *    *      +---+
 +
                *      *------- o ---------*    *-------+ B |
 +
                *      *                  *    *      +---+
 +
                *      *                    ****
 +
  +---+        *      *                    |
 +
  |  |        *      *                    |
 +
  | A +---------*      *                    o ST Agent 3
 +
  |  |        *      *                    |
 +
  +---+        *      *                    |
 +
                *      *                    ***
 +
                *      *                  *  *        +---+
 +
                *      *    ST Agent 2    *    *-------+ C |
 +
                *      *------- o --------*    *      +---+
 +
                  *    *                  *    *
 +
                  ****                    *    *
 +
                                          *    *
 +
                              +---+        *    *      +---+
 +
                              | E +--------*    *-------+ D |
 +
                              +---+        *  *        +---+
 +
                                            ***
  
2.     Introduction
+
      Figure 2. Topology Used in Protocol Exchange Diagrams
  
   ST has been developed to support efficient delivery of streams of
+
                  ****    ST Agent 1      ****
   packets to either single or multiple destinations in applications
+
                  * +--+---14--- o -----15--+----+--44---+---+
   requiring guaranteed data rates and controlled delay characteristics.
+
                *  | +-+--11---  -----16--+-+  *      | B |
  The motivation for the original protocol was that IP [2] [15] did not
+
                *  | | *                  * |+-+--45---+---+
   provide the delay and data rate characteristics necessary to support
+
                *  | | *                    *++*
  voice applications.
+
  +---+        *  | | *                  34 ||32
 +
  |  +----4----+--+ | *                    ||
 +
   | A +----6----+----+ *                    o ST Agent 3
 +
   |  +----5----+---+  *                    |
 +
   +---+        *  |  *                    | 33
 +
                *  |  *      ST          *+*
 +
                *  |  *      Agent        * | *
 +
                *  |  *        2 -----24-+--+  *      +---+
 +
                *  +--+--23--- o -----25-+-----+--54---+ C |
 +
                  *   *          -----26-+---+ *      +---+
 +
                  ****            -----27-+-+ | *
 +
                                          * | | *
 +
                              +---+        * | | *      +---+
 +
                              | E +---74---+-+ +-+--64---+ D |
 +
                              +---+        *  *        +---+
 +
                                            ***
  
  ST is an internet protocol at the same layer as IP, see Figure 1ST
+
      Figure 3Virtual Link Identifiers for SCMP Messages
  differs from IP in that IP, as originally envisioned, did not require
 
  routers (or intermediate systems) to maintain state information
 
  describing the streams of packets flowing through them.  ST
 
  incorporates the concept of streams across an internet.  Every
 
  intervening ST entity maintains state information for each stream
 
  that passes through it.  The stream state includes forwarding
 
  information, including multicast support for efficiency, and resource
 
  information, which allows network or link bandwidth and queues to be
 
  assigned to a specific stream.  This pre-allocation of resources
 
  allows data packets to be forwarded with low delay, low overhead, and
 
  a low probability of loss due to congestion.  The characteristics of
 
  a stream, such as the number and location of the endpoints, and the
 
  bandwidth required, may be modified during the lifetime of the
 
  stream.  This allows ST to give a real time application the
 
  guaranteed and predictable communication characteristics it requires,
 
  and is a good vehicle to support an application whose communications
 
  requirements are relatively predictable.
 
  
  ST proved quite useful in several early experiments that involved
+
== ST Control Message Protocol Functional Description ==
  voice conferences in the Internet.  Since that time, ST has also been
 
  used to support point-to-point streams that include both video and
 
  voice.  Recently, multimedia conferencing applications have been
 
  developed that need to exchange real-time voice, video, and pointer
 
  data in a multi-site conferencing environment.  Multimedia
 
  conferencing across an internet is an application for which ST
 
  provides ideal support.  Simulation and wargaming applications [14]
 
  also place similar requirements on the communication system.  Other
 
  applications may include scientific visualization between a number of
 
  workstations and one or more remote supercomputers, and the
 
  collection and distribution of real-time sensor data from remote
 
  sensor platforms.  ST may also be useful to support activities that
 
  are currently supported by IP, such as bulk file transfer using TCP.
 
  
  Transport protocols above ST include the Packet Video Protocol (PVP)
+
This section contains a functional description of the ST Control
  [5] and the Network Voice Protocol (NVP) [4], which are end-to-end
+
Message Protocol (SCMP); Section 4 (page 75) specifies the formats of
  protocols used directly by applicationsOther transport layer
+
the control message PDUs.  We begin with a description of stream
  protocols that may be used over ST include TCP [16], VMTP [3], etc.
+
setup.  Mechanisms used to deal with the exceptional cases are then
  They provide the user interface, flow control, and packet ordering.
+
presented.  Complications due to options that an application or a ST
  This specification does not describe these higher layer protocols.
+
agent may select are then detailed.  Once a stream has been
 +
established, the data transfer phase is entered; it is described.
 +
Once the data transfer phase has been completed, the stream must be
 +
torn down and resources released; the control messages used to
 +
perform this function are presentedThe resources or participants
 +
of a stream may be changed during the lifetime of the stream; the
 +
procedures to make changes are described.  Finally, the section
 +
concludes with a description of some ancillary functions, such as
 +
failure detection and recovery, HID negotiation, routing, security,
 +
etc.
  
 +
To help clarify the SCMP exchanges used to setup and maintain ST
 +
streams, we have included a series of figures in this section.  The
 +
protocol interactions in the figures assume the topology shown in
 +
Figure 2.  The figures, taken together,
  
 +
o  Create a stream from an application at A to three peers at B,
 +
    C and D,
  
 +
o  Add a peer at E,
  
 +
o  Disconnect peers B and C, and
  
CIP Working Group                                             
+
o  D drops out of the stream.
  
RFC 1190                Internet Stream Protocol            October 1990
+
Other figures illustrate exchanges related to failure recovery.
  
 +
In order to make the dispatch function within SCMP more uniform and
 +
efficient, each end of a hop is assigned, by the agent at that end, a
 +
Virtual Link Identifier that uniquely (within that agent) identifies
 +
the hop and associates it with a particular stream's state
 +
machine(s).  The identifier at the end of a link that is sending a
 +
message is called the Sender Virtual Link Identifier (SVLId);  that
 +
at the receiving end is called the Receiver Virtual Link Identifier
 +
(RVLId).  Whenever one agent sends a control message for the other to
 +
receive, the sender will place the receiver's identifier into the
 +
RVLId field of the message and its own identifier in the SVLId field.
 +
When a reply to the message is sent, the values in SVLId and RVLId
 +
fields will be reversed, reflecting the fact the sender and receiver
 +
roles are reversed.  VLIds with values zero through three are
 +
received and should not be assigned in response to CONNECT messages.
 +
Figure 3 shows the hops that will be used in the examples and
 +
summarizes the VLIds that will be assigned to them.
  
  2.1.      Major Differences Between ST and ST-II
+
Similarly, Figure 4 summarizes the HIDs that will eventually be
 +
negotiated as the stream is created.
  
       ST-II supports a wider variety of applications than did the
+
                  ****    ST Agent 1       ****
       original ST. The differences between ST and ST-II are fairly
+
                  *  +>+--1200-> o -------->+--->+-3600->+---+
       straight forward yet provide great improvements. Four of the more
+
                *  ^  *                  *    *       | B |
      notable differences are:
+
                *  |  *                  * +->+-6000->+---+
 +
                *  |  *                    *+**
 +
  +---+        *  |  *                    ^
 +
  |  +-------->+-->+  *                    |
 +
  | A |        *      *                    o St Agent 3
 +
  |  +-------->+-->+  *                    ^
 +
  +---+        *  |  *                    | 4801
 +
                *  |  *                    *+*
 +
                *  V  *  ST Agent 2      * ^ *        +---+
 +
                  *  +>+--2400-> o ------->+->+->+-4800->+ C |
 +
                  ****                    *  |  * 4801 +---+
 +
                                          *  |  *
 +
                              +---+        *  V  *       +---+
 +
                              | E +<-4800--+<-+->+-4800->+ D |
 +
                              +---+        *  *  4801 +---+
 +
                                            ***
  
        1 ST-II is decoupled from the Access Controller (AC).  The
+
          Figure 4. HIDs Assigned for ST User Packets
            AC, as well as providing a rudimentary access control
 
            function, also served as a centralized repository and
 
            distributor of the conference information.  If an AC is
 
            necessary, it should be an entity in a higher layer
 
            protocol.  A large variety of applications such as
 
            conferencing, distributed simulations, and wargaming can
 
            be run without an explicit AC.
 
  
        2 The basic stream construct of ST-II is a directed tree
+
Some of the diagrams that follow form a progression. For example,
            carrying traffic away from a source to all the
+
the steps required initially to establish a connection are spread
            destinations, rather than the original ST's omniplex
+
across five figures.  Within a progression, the actions on the first
            structureFor example, a conference is composed of a
+
diagram are numbered 1.1, 1.2, etc.;  within the second diagram they
            number of such trees, one for traffic from each
+
are numbered 2.1, 2.2, etcPoints where control leaves one diagram
            participantAlthough there are more (simplex) streams in
+
to enter another are identified with a continuation arrow "-->>", and
            ST-II, each is much simpler to manage, so the aggregate is
+
are continued with "[a.b] >>-->" in the other diagramThe number in
            much simpler. This change has a minimal impact on the
+
brackets shows the label where control left the earlier diagram.  The
            application.
+
reception of simple acknowledgments, e.g., ACKs, in one figure from
 +
another is omitted for clarity.
  
        3 ST-II defines a number of the robustness and recovery
+
3.1.       Stream Setup
            mechanisms that were left undefined in the original ST
 
            specification. In case of a network or ST Agent failure,
 
            a stream may optionally be repaired automatically (i.e.,
 
            without intervention from the user or the application)
 
            using a pruned depth first search starting at the ST Agent
 
            immediately preceding the failure.
 
  
        4  ST-II does not make an inherent distinction between
+
  This section presents a description of stream setup assuming that
            streams connecting only two communicants and streams among
+
  everything succeeds -- HIDs are approved, any required resources
            an arbitrary number of communicants.
+
  are available, and the routing is correct.
  
      This memo is the specification for the ST-II Protocol. Since
+
  3.1.1.       Initial Setup at the Origin
      there should be no ambiguity between the original ST specification
 
      and the specification herein, the protocol is simply called ST
 
      hereafter.
 
  
       ST is the protocol used by ST entities to exchange information.
+
       As described in Section 2.3 (page 11), the application has
      The same protocol is used for communication among all ST entities,
+
       collected the information necessary to determine the
       whether they communicate with a higher layer protocol or forward
 
      ST packets between attached networks.
 
  
       The remainder of this section gives a brief overview of the ST
+
       participants in the communication before passing it to the host
       ProtocolSection 3 (page 17) provides a detailed description of
+
       ST agent at the originThe host ST agent will take this
       the operations required by the protocol.  Section 4 (page 75)
+
       information, allocate a Name for the stream (see Section
      provides descriptions of the ST Protocol Data Units exchanged
+
      4.2.2.8 (page 87)), and create a stream.
  
 +
  3.1.2.        Invoking the Routing Function
  
CIP Working Group                                             
+
      An ST agent that is setting up a stream invokes a routing
 +
      function to find a path to reach each of the targets specified
 +
      in the TargetList.  This is similar to the routing decision in
 +
      IP.  However, in this case the route is to a multitude of
 +
      targets rather than to a single destination.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      The set of next-hops that an ST agent would select is not
 +
      necessarily the same as the set of next hops that IP would
 +
      select given a number of independent IP datagrams to the same
 +
      destinations.  The routing algorithm may attempt to optimize
 +
      parameters other than the number of hops that the packets will
 +
      take, such as delay, local network bandwidth consumption, or
 +
      total internet bandwidth consumption.
  
 +
      The result of the routing function is a set of next-hop ST
 +
      agents and the parameters of the intervening network(s).  The
 +
      latter permit the ST agent to determine whether the selected
 +
      network has the resources necessary to support the level of
 +
      service requested in the FlowSpec.
  
      between ST entities. Issues that have not yet been fully
+
  3.1.3.       Reserving Resources
      addressed are presented in Section 5 (page 131). A glossary and
 
      list of references are in Sections 6 (page 135) and 7 (page 143),
 
      respectively.
 
  
       This memo also defines "subsets" of ST that can be implementedA
+
       The intent of ST is to provide a guaranteed level of service by
       subsetted implementation does not have full ST functionality, but
+
      reserving internet resources for a stream during a setup phase
       it can interoperate with other similarly subsetted
+
      rather than on a per packet basisThe relevant resources are
       implementations, or with a full implementation, in a predictable
+
       not only the forwarding information maintained by the ST
       and consistent mannerThis approach allows an implementation to
+
      agents, but also packet switch processor bandwidth and buffer
       be built and provide service with minimum effort, and gives it an
+
      space, and network bandwidth and multicast group identifiers.
       immediate and well defined growth path.
+
       Reservation of these resources can help to increase the
 +
       reliability and decrease the delay and delay variance with
 +
       which data packets are deliveredThe FlowSpec contains all
 +
      the information needed by the ST agent to allocate the
 +
       necessary resources.  When and how these resources are
 +
      allocated depends on the details of the networks involved, and
 +
       is not specified here.
  
 +
      If an ST agent must send data across a network to a single
 +
      next-hop ST agent, then only the point-to-point bandwidth needs
 +
      to be reserved.  If the agent must send data to multiple next-
 +
      hop agents across one network and network layer multicasting is
 +
      not available, then bandwidth must be reserved for all of them.
 +
      This will allow the ST agent to
  
  2.2.       Concepts and Terminology
+
      use replication to send a copy of the data packets to each
 +
      next-hop agent.
  
       The ST packet header is not constrained to be compatible with the
+
       If multicast is supported, its use will decrease the effort
       IP packet header, except for the IP Version Number (the first four
+
       that the ST agent must expend when forwarding packets and also
       bits) that is used to distinguish ST packets (IP Version 5) from
+
      reduces the bandwidth required since one copy can be received
       IP packets (IP Version 4)The ST packets, or protocol data units
+
       by all next-hop agents.  However, the setup phase is more
       (PDUs), can be encapsulated in IP either to provide connectivity
+
       complicatedA network multicast address must be allocated
       (possibly with degraded service) across portions of an internet
+
      that contains all those next-hop agents, the sender must have
      that do not provide support for ST, or to allow access to services
+
       access to that address, the next-hop agents must be informed of
       such as security that are not provided directly by ST.
+
      the address so they can join the multicast group identified by
 +
       it (see Section 4.2.2.7 (page 86)), and a common HID must be
 +
       negotiated.
  
       An internet entity that implements the ST Protocol is called an
+
       The network should consider the bandwidth and multicast
       "ST Agent".  We refer to two kinds of ST agents:  "host ST
+
       requirements to determine the amount of packet switch
       agents", also called "host agents" and "intermediate ST agents",
+
       processing bandwidth and buffer space to reserve for the
      also called "intermediate agents".  The ST agents functioning as
+
       streamIn addition, the membership of a stream in a Group may
      hosts are sourcing or sinking data to a higher layer protocol or
+
       affect the resources that have to be allocated; see Section
      application, while ST agents functioning as intermediate agents
+
       3.7.3 (page 56).
      are forwarding data between directly attached networks.  This
 
      distinction is not part of the protocol, but is used for
 
       conceptual purposes onlyIndeed, a given ST agent may be
 
       simultaneously performing both host and intermediate roles. Every
 
      ST agent should be capable of delivering packets to a higher layer
 
       protocol. Every ST agent can replicate ST data packets as
 
      necessary for multi-destination delivery, and is able to send
 
      packets whether received from a network interface or a higher
 
      layer protocol. There are no other kinds of ST agents.
 
  
       ST provides applications with an end-to-end flow oriented service
+
       Few networks in the Internet currently offer resource
       across an internet.  This service is implemented using objects
+
       reservation, and none that we know of offer reservation of all
       called "streams"ST data packets are not considered to be
+
       the resources specified hereOnly the Terrestrial Wideband
       totally independent as are IP data packets.  They are transmitted
+
       Network (TWBNet) [7] and the Atlantic Satellite Network
       only as part of a point-to-point or point-to-multi- point stream.
+
       (SATNET) [9] offer(ed) bandwidth reservation. Multicasting is
      ST creates a stream during a setup phase before data is
+
       more widely supportedNo network provides for the reservation
       transmittedDuring the setup phase, routes are selected and
+
       of packet switch processing bandwidth or buffer spaceWe hope
       internetwork resources are reservedExcept for explicit changes
+
       that future networks will be designed to better support
       to the stream, the routes remain in effect until the stream is
+
       protocols like ST.
       explicitly torn down.
 
  
 +
      Effects similar to reservation of the necessary resources may
 +
      be obtained even when the network cannot provide direct support
 +
      for the reservation.  Certainly if total reservations are a
 +
      small fraction of the overall resources, such as packet switch
 +
      processing bandwidth, buffer space, or network bandwidth, then
 +
      the desired performance can be honored if the degree of
 +
      confidence is consistent with the requirements as stated in the
 +
      FlowSpec.  Other solutions can be designed for specific
 +
      networks.
  
 +
  3.1.4.        Sending CONNECT Messages
  
CIP Working Group                                             
+
      A VLId and a proposed HID must be selected for each next-hop
 +
      agent.  The control packets for the next-hop must carry the
 +
      VLId in the SVLId field.  The data packets transmitted in the
 +
      stream to the next-hop must carry the HID in the ST Header.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      The ST agent sends a CONNECT message to each of the ST agents
 +
      identified by the routing function.  Each CONNECT message
 +
      contains the VLId, the proposed HID (the HID Field option bit
  
 +
      must be set, see Section 3.6.1 (page 44)), an updated FlowSpec,
 +
      and a TargetList.  In general, the HID, FlowSpec, and
 +
      TargetList will depend on both the next-hop and the intervening
 +
      network.  Each TargetList is a subset of the received (or
 +
      original) TargetList, identifying the targets that are to be
 +
      reached through the next-hop to which the CONNECT message is
 +
      being sent.  Note that a CONNECT message to a single next-hop
 +
      might have to be fragmented into multiple CONNECTs if the
 +
      single CONNECT is too large for the intervening network's MTU;
 +
      fragmentation is performed by further dividing the TargetList.
  
       An ST stream is:
+
       If multiple next-hops are to be reached through a network that
 +
      supports network level multicast, a different CONNECT message
 +
      must nevertheless be sent to each next-hop since each will have
 +
      a different TargetList;  see Section 4.2.3.5 (page 105).
 +
      However, since an identical copy of each ensuing data packet
 +
      will reach each member of the multicast group, all the CONNECT
 +
      messages must propose the same HID.  See Section 3.7.4 (page
 +
      58) for a detailed discussion on HID selection.
  
        o  the set of paths that data generated by an application
+
      In the example of Figure 2, the routing function might return
            entity traverses on its way to its peer application
+
      that B is reachable via Agent 1 and C and D are reachable via
            entity(s) that receive it,
+
      Agent 2.  Thus A would create two CONNECT messages, one each
 +
      for Agents 1 and 2, as illustrated in Figure 5.  Assuming that
 +
      the proposed HIDs are available in the receiving agents, they
 +
      would each send a responding HID-APPROVE back to Agent A.
  
        o the resources allocated to support that transmission of
+
      Application Agent A                    Agent 1    Agent 2
            data, and
 
  
        o the state information that is maintained describing that
+
  1.1. (open B,C,D)
             transmission of data.
+
             V
 +
1.2.      +-> (routing to B,C,D)
 +
                      V
 +
1.3.                +->(reserve resources from A to Agent 1)
 +
                      |  V
 +
1.4.                |  +-> CONNECT B --------->>
 +
                      |      <RVLId=0><SVLId=4>
 +
                      |      <Ref=10><HID=1200>
 +
                      V
 +
1.5.                +->(reserve resources from A to Agent 2)
 +
                        V
 +
1.6.                    +-> CONNECT C,D ------------------>>
 +
                            <RVLId=0><SVLId=5>
 +
                            <Ref=15><HID=2400>
  
      Each stream is identified by a globally unique "Name";  see
+
            Figure 5Origin Sending CONNECT Message
      Section 4.2.2.8 (page 87)The Name is specified in ST control
 
      operations, but is not used in ST data packets.  A set of streams
 
      may be related as members of a larger aggregate called a "group".
 
      A group is identified by a "Group Name";  see Section 3.7.3 (page
 
      56).
 
  
      The end-users of a stream are called the "participants" in the
+
  3.1.5.       CONNECT Processing by an Intermediate Agent
      stream. Data travels in a single direction through any given
 
      stream. The host agent that transmits the data into the stream is
 
      called the "origin", and the host agents that receive the data are
 
      called the "targets".  Thus, for any stream one participant is the
 
      origin and the others are the targets.
 
  
       A stream is "multi-destination simplex" since data travels across
+
       An ST agent receiving a CONNECT message should, assuming no
       it in only one direction:  from the origin to the targets.  A
+
       errors, quickly select a VLId and respond to the previous-hop
       stream can be viewed as a directed tree in which the origin is the
+
       with either an ACK, a HID-REJECT, or a HID-APPROVE message, as
       root, all the branches are directed away from the root toward the
+
      is appropriate.  This message must identify the CONNECT to
       targets, which are the leavesA "hop" is an edge of that tree.
+
       which it corresponds by including the CONNECT's Reference
       The ST agent that is on the end of an edge in the direction toward
+
       number in its Reference fieldNote that the VLId that this
      the origin is called the "previous-hop ST agent", or the
+
       agent selects is placed in the SVLId of the response, and the
       "previous-hop".  The ST agents that are one hop away from a
+
       previous-hop's VLId (which is contained in the SVLId of the
      previous-hop ST agent in the direction toward the targets are
+
       CONNECT) is copied into the RVLId of the responseIf the
       called the "next-hop ST agents", or the "next-hops"It is
+
      agent is not a target, it must then invoke the routing
       possible that multiple edges between a previous-hop and several
+
       function, reserve resources, and send a CONNECT message(s) to
       next-hops are actually implemented by a network level multicast
+
       its next-hop(s), as described in Sections 3.1.2-4 (pages 19-
       group.
+
       20).
  
      Packets travel across a hop for one of two purposes:  data or
+
    Agent A                   Agent 1                      Agent B
      control.  For ST data packet handling, hops are marked by "Hop
 
      IDentifiers" (HIDs) used for efficient forwarding instead of the
 
      stream's Name.  A HID is negotiated among several agents so that
 
      data forwarding can be done efficiently on both a point-to-point
 
      and multicast basis.  All control message exchange is done on a
 
      point-to-point basis between a pair of agents.  For control
 
      message handling, Virtual Link Identifiers are used to quickly
 
      dispatch the control messages to the proper stream's state
 
      machine.
 
  
 +
[1.4] >>-> CONNECT B -------->+--+
 +
            <RVLId=0><SVLId=4> |  V
 +
=== <Ref=10><HID=1200> |  (routing to B) ===
 +
                              |  V
 +
=== V  +->(reserve resources from 1 to B) ===
 +
=== +<- HID-APPROVE <------+    V ===
 +
=== <RVLId=4><SVLId=14>      +-> CONNECT B ---------->> ===
 +
            <Ref=10><HID=1200>          <RVLId=0><SVLId=15>
 +
                                        <Ref=110><HID=3600>
  
 +
    Agent A                  Agent 2                      Agent C
  
 +
[1.6] >>-> CONNECT C,D ------>+-+
 +
            <RVLId=0><SVLId=5> | V
 +
=== <Ref=15><HID=2400> | (routing to C,D) ===
 +
                              | V
 +
=== V +-->(reserve resources from 2 to C) ===
 +
=== +<- HID-APPROVE <------+ |  V ===
 +
=== <RVLId=5><SVLId=23>  |  +-> CONNECT C ---------->> ===
 +
            <Ref=15><HID=2400>  |      <RVLId=0><SVLId=25>
 +
                                |      <Ref=210><HID=4800>
 +
                                |
 +
                                |                        Agent D
 +
                                V
 +
=== +->(reserve resources from 2 to D) ===
 +
                                    V
 +
2.10.                                  +-> CONNECT D ---------->>
 +
                                        <RVLId=0><SVLId=26>
 +
                                        <Ref=215><HID=4800>
  
CIP Working Group                                           
+
      Figure 6.  CONNECT Processing by an Intermediate Agent
  
RFC 1190                Internet Stream Protocol            October 1990
+
      The resources listed as Desired in a received FlowSpec may not
 +
      correspond to those actually reserved in either the ST agent
 +
      itself or in the network(s) used to reach the next-hop
 +
      agent(s).  As long as the reserved resources are sufficient to
 +
      meet the specified Limits, the copy of the FlowSpec sent to a
 +
      next-hop must have the Desired resources updated to reflect the
 +
      resources that were actually obtained.  For example, the
 +
      Desired bandwidth might be reduced because the network to the
 +
      next-hop could not provide all of the desired bandwidth.  Also,
 +
      the delay and delay variance are appropriately increased, and
 +
      the link MTU may require that the DesPDUBytes field be reduced.
 +
      (The minimum requirements that the origin had entered into the
 +
      FlowSpec Limits fields cannot be altered by the intermediate or
 +
      target agents.)
  
 +
  3.1.6.        Setup at the Targets
  
       ST requires routing decisions to be made at several points in the
+
       An ST agent that is the target of a CONNECT, whether from an
       stream setup and management process.  ST assumes that an
+
       intermediate ST agent, or directly from the origin host ST
      appropriate routing algorithm exists to which ST has access; see
+
       agent, must respond first (assuming no errors) with either a
       Section 3.8.1 (page 69).  However, routing is considered to be a
+
       HID-REJECT or HID-APPROVEAfter inquiring from the specified
       separate issueThus neither the routing algorithm nor its
+
       application process whether or not it is willing to accept the
      implementation is specified here.  A routing algorithm may attempt
+
       connection, the agent must also respond with either an ACCEPT
       to minimize the number of hops to the target(s), or it may be more
+
       or a REFUSE.
      intelligent and attempt to minimize the total internet resources
 
       consumed.  ST operates equally well with any reasonable routing
 
       algorithm.  The availability of a source routing option does not
 
      eliminate the need for an appropriate routing algorithm in ST
 
      agents.
 
  
 +
      In particular, the application must be presented with
 +
      parameters from the CONNECT, such as the Name, FlowSpec,
 +
      Options, and Group, to be used as a basis for its decision.
 +
      The application is identified by a combination of the NextPcol
 +
      field and the SAP field in the (usually) single remaining
 +
      Target of the TargetList.  The contents of the SAP field may
 +
      specify the "port" or other local identifier for use by the
 +
      protocol layer above the host ST layer.  Subsequently received
 +
      data packets will carry a short hand identifier (the HID) that
 +
      can be mapped into this information and be used for their
 +
      delivery.
  
  2.3.      Relationship Between Applications and ST
+
      The responses to the CONNECT message are sent to the previous-
 +
      hop from which the CONNECT was received.  An ACCEPT contains
 +
      the Name of the stream and the updated FlowSpec. Note that the
 +
      application might have reduced the desired level of service in
 +
      the received FlowSpec before accepting it. The target must not
 +
       send the ACCEPT until HID negotiation has been successfully
 +
      completed.
  
       It is the responsibility of an ST application entity to exchange
+
       Since the ACCEPT or REFUSE message must be acknowledged by the
       information among its peers, usually via IP, as necessary to
+
      previous-hop, it is assigned a new Reference number that will
       determine the structure of the communication before establishing
+
      be returned in the ACK.  The CONNECT to which the ACCEPT or
       the ST stream. This includes:
+
       REFUSE is a reply is identified by placing the CONNECT's
 +
       Reference number in the LnkReference field of the ACCEPT or
 +
       REFUSE.
  
         o identifying the participants,
+
        Agent 1                    Agent B      Application B
 +
3.1.                                            (proc B listening)
 +
      [2.4] >>-> CONNECT B ---------->+------------------+
 +
                <RVLId=0><SVLId=15>  |                  |
 +
3.2.              <Ref=110><HID=3600>  V         (proc B accepts)
 +
3.3.          +<- HID-APPROVE <--------+                  |
 +
                <RVLId=15><SVLId=44>                    |
 +
                <Ref=110><HID=3600>                    V
 +
3.4.                      (wait until HID negotiated) <---+
 +
                                      V
 +
  3.5.      <<--+<- ACCEPT B <-----------+
 +
                <RVLId=15><SVLId=44>
 +
                <Ref=410><LnkRef=110>
  
         o determining which are targets for which origins,
+
        Agent 2                    Agent C      Application C
 +
3.6.                                            (proc C listening)
 +
      [2.8] >>-> CONNECT C ---------->+------------------+
 +
                <RVLId=0><SVLId=25>  |                  |
 +
3.7.              <Ref=210><HID=4800>  V         (proc C accepts)
 +
3.8.          +<- HID-APPROVE <--------+                  |
 +
                <RVLId=25><SVLId=54>                    |
 +
                <Ref=210><HID=4800>                    V
 +
3.9.                      (wait until HID negotiated) <---+
 +
                                      V
 +
  3.10.      <<--+<- ACCEPT C <-----------+
 +
                <RVLId=25><SVLId=54>
 +
                <Ref=510><LnkRef=210>
  
         o selecting the characteristics of the data flow between any
+
        Agent 2                    Agent D      Application D
            origin and its target(s),
+
3.11.                                            (proc D listening)
 +
    [2.10] >>-> CONNECT D ---------->+------------------+
 +
                <RVLId=0><SVLId=26>  |                  |
 +
3.12.              <Ref=215><HID=4800>  V         (proc D accepts)
 +
  3.13.          +<- HID-APPROVE <--------+                  |
 +
                <RVLId=26><SVLId=64>                    |
 +
                <Ref=215><HID=4800>                    V
 +
3.14.                      (wait until HID negotiated) <---+
 +
                                      V
 +
3.15.      <<--+<- ACCEPT D <-----------+
 +
                <RVLId=26><SVLId=64>
 +
                <Ref=610><LnkRef=215>
  
        o specifying the protocol that resides above ST,
+
          Figure 7. CONNECT Processing by the Target
  
        o  identifying the Service Access Point (SAP), port, or
+
  3.1.7.        ACCEPT Processing by an Intermediate Agent
            socket relevant to that protocol at every participant, and
 
  
        o ensuring security, if necessary.
+
      When an intermediate ST agent receives an ACCEPT, it first
 +
      verifies that the message is a response to an earlier CONNECT.
 +
      If not, it responds to the next-hop ST agent with an ERROR-IN-
 +
      REPLY (LnkRefUnknown) message. Otherwise, it responds to the
 +
      next-hop ST agent with an ACK, and propagates
  
       The protocol layer above ST must pass such information down to the
+
       the ACCEPT message to the previous-hop along the same path
       ST protocol layer when creating a stream.
+
      traced by the CONNECT but in the reverse direction toward the
 +
      origin.  The ACCEPT should not be propagated until all HID
 +
      negotiations with the next-hop agent(s) have been successfully
 +
       completed.
  
       ST uses a flow specification, abbreviated herein as "FlowSpec", to
+
       The FlowSpec is included in the ACCEPT message so that the
      describe the required characteristics of a stream.  Included are
+
       origin and intermediate ST agents can gain access to the
       bandwidth, delay, and reliability parameters.  Additional
+
       information that was accumulated as the CONNECT traversed the
       parameters may be included in the future in an extensible manner.
+
       internetNote that the resources, as specified in the
      The FlowSpec describes both the desired values and their minimal
+
       FlowSpec in the ACCEPT message, may differ from the resources
       allowable valuesThe ST agents thus have some freedom in
+
       that were reserved by the agent when the CONNECT was
       allocating their resources.  The ST agents accumulate information
 
      that describes the characteristics of the chosen path and pass
 
       that information to the origin and the targets of the stream.
 
  
      ST stream setup control messages carry some information that is
+
  Agent A                    Agent 1                    Agent B
      not specifically relevant to ST, but is passed through the
 
      interface to the protocol that resides above ST.  The "next
 
  
 +
                                  +<-+<- ACCEPT B <-------<< [3.5]
 +
                                  V  |  <RVLId=15><SVLId=44>
 +
=== (wait for ACCEPTS) V  <Ref=410><LnkRef=110> ===
 +
=== V  +-> ACK --------------->+ ===
 +
=== (wait until HID negotiated)<-+      <RVLId=44><SVLId=15> ===
 +
                              V        <Ref=410>
 +
=== <<--+<-- ACCEPT B <---------+ ===
 +
            <RVLId=4><SVLId=14>
 +
            <Ref=115><LnkRef=10>
  
 +
    Agent A                    Agent 2                    Agent C
  
CIP Working Group                                           
+
                                  +<-+<- ACCEPT C <------<< [3.10]
 +
                                  |  |  <RVLId=25><SVLId=54>
 +
                                  |  V  <Ref=510><LnkRef=210>
 +
=== |  +-> ACK --------------->+ ===
 +
                                  |      <Ref=510>
 +
                                  |      <RVLId=54><SVLId=25>
 +
                                  |
 +
                                  |                      Agent D
 +
                                  V
 +
                                  +<-+<- ACCEPT D <------<< [3.15]
 +
                                  V  |  <RVLId=26><SVLId=64>
 +
=== (wait for ACCEPTS) V  <Ref=610><LnkRef=215> ===
 +
=== V  +-> ACK --------------->+ ===
 +
=== (wait until HID negotiated)<-+      <RVLId=64><SVLId=26> ===
 +
                              V        <Ref=610>
 +
=== <<--+<- ACCEPT C <----------+ ===
 +
          <RVLId=5><SVLId=23> |
 +
          <Ref=220><LnkRef=15>|
 +
                              V
 +
4.10. <<--+<- ACCEPT D <----------+
 +
          <RVLId=5><SVLId=23>
 +
          <Ref=225><LnkRef=15>
  
RFC 1190                Internet Stream Protocol            October 1990
+
      Figure 8.  ACCEPT Processing by an Intermediate Agent
  
 +
      originally processed.  However, the agent does not adjust the
 +
      reservation in response to the ACCEPT.  It is expected that any
 +
      excess resource allocation will be released for use by other
 +
      stream or datagram traffic through an explicit CHANGE message
 +
      initiated by the application at the origin if it does not wish
 +
      to be charged for any excess resource allocations.
  
      protocol identifier" ("NextPcol") allows ST to demultiplex streams
+
  3.1.8.       ACCEPT Processing by the Origin
      to a number of possible higher layer protocols. The SAP
 
      associated with each participant allows the higher layer protocol
 
      to further demultiplex to a specific application entity. A
 
      UserData parameter is provided;  see Section 4.2.2.16 (page 98).
 
  
 +
      The origin will eventually receive an ACCEPT (or REFUSE or
 +
      ERROR-IN-REQUEST) message from each of the targets.  As each
 +
      ACCEPT is received, the application should be notified of the
 +
      target and the resources that were successfully allocated along
 +
      the path to it, as specified in the FlowSpec contained in the
 +
      ACCEPT message.  The application may then use the information
 +
      to either adopt or terminate the portion of the stream to each
 +
      target.  When ACCEPTs (or failures) from all targets have been
 +
      received at the origin, the application is notified that stream
 +
      setup is complete, and that data may be sent.
  
  2.4.      ST Control Message Protocol
+
      Application A  Agent A                  Agent 1  Agent 2
  
      ST agents create and manage a stream using the ST Control Message
+
                        +<-- ACCEPT B <--------<< [4.4]
      Protocol (SCMP). Conceptually, SCMP resides immediately above ST
+
                        |    <RVLId=4><SVLId=14>
      (as does ICMP above IP) but is an integral part of ST. Control
+
                        V    <Ref=115><LnkRef=10>
      messages are used to:
+
5.1.                    +--> ACK ----------------->+
 +
                        |    <RVLId=14><SVLId=4>
 +
                        V    <Ref=115>
 +
5.2.        +<-- (inform A of B's FlowSpec)
 +
            |            +<-- ACCEPT C <----------------<< [4.9]
 +
            |            |    <RVLId=5><SVLId=23>
 +
            |            V    <Ref=220><LnkRef=15>
 +
5.3.        |            +--> ACK ------------------------->+
 +
            |            |    <RVLId=23><SVLId=5>
 +
            |            V    <Ref=220>
 +
5.4.        +<-- (inform A of C's FlowSpec)
 +
            |            +<-- ACCEPT D <----------------<< [4.10]
 +
            |            |    <RVLId=5><SVLId=23>
 +
            |            V    <Ref=225><LnkRef=15>
 +
5.5.        |            +--> ACK ------------------------->+
 +
            |            |    <RVLId=23><SVLId=5>
 +
            |            V    <Ref=225>
 +
5.6.        +<-- (inform A of D's FlowSpec)
 +
            V
 +
5.7.   (wait until HIDs negotiated)
 +
            V
 +
5.8.    (inform A open to B,C,D)
  
        o create streams,
+
            Figure 9. ACCEPT Processing by the Origin
  
        o refuse creation of a stream,
+
      There are several pieces of information contained in the
 +
      FlowSpec that the application must combine before sending data
 +
      through the stream. The PDU size should be computed from the
 +
      minimum value of the DesPDUBytes field from all ACCEPTs and the
 +
      protocol layers above ST should be informed of the limit.  It
 +
      is expected that the next higher protocol layer above ST will
 +
      segment its PDUs accordingly.  Note, however, that the MTU may
 +
      decrease over the life of the stream if new targets are
 +
      subsequently added.  Whether the MTU should be increased as
 +
      targets are dropped from a stream is left for further study.
  
        o delete a stream in whole or in part,
+
      The available bandwidth and packet rate limits must also be
 +
      combined. In this case, however, it may not be possible to
 +
      select a pair of values that may be used for all paths, e.g.,
 +
      one path may have selected a low rate of large packets while
 +
      another selected a high rate of small packets.  The application
 +
      may remedy the situation by either tearing down the stream,
 +
      dropping some participants, or creating a second stream.
  
        o  negotiate or change a stream's parameters,
+
      After any differences have been resolved (or some targets have
 +
      been deleted by the application to permit resolution), the
 +
      application at the origin should send a CHANGE message to
 +
      release any excess resources along paths to those targets that
 +
      exceed the resolved parameters for the stream, thereby reducing
 +
      the costs that will be incurred by the stream.
  
        o  tear down parts of streams as a result of router or
+
  3.1.9.        Processing a REFUSE Message
            network failures, or transient routing inconsistencies,
 
            and
 
  
        o reroute around network or component failures.
+
      REFUSE messages are used to indicate a failure to reach an
 +
      application at a target; they are propagated toward the origin
 +
      of a stream. They are used in three situations:
  
      SCMP follows a request-response model. SCMP reliability is
+
      1 during stream setup or expansion to indicate that there
      ensured through use of retransmission after timeout;  see Section
+
          is no satisfactory path from an ST agent to a target,
      3.7.6 (page 66).
 
  
      An ST application that will transmit data requests its local ST
+
      2 when the application at the target either does not
      agent, the origin, to create a stream. While only the origin
+
          exist does not wish to be a participant, or wants to
      requests creation of a stream, all the ST agents from the origin
+
          cease being a participant, and
      to the targets participate in its creation and management.  Since
 
      a stream is simplex, each participant that wishes to transmit data
 
      must request that a stream be created.
 
  
      An ST agent that receives an indication that a stream is being
+
      3  when a failure has been detected and the agents are
      created must:
+
          trying to find a suitable path around the failure.
  
        1 negotiate a HID with the previous-hop identifying the
+
      The cases are distinguished by the ReasonCode field and an
            stream,
+
      agent receiving a REFUSE message must examine that field in
 +
      order to determine the proper action to be taken. In
 +
      particular, if the ReasonCode indicates that the CONNECT
 +
      message reached the target then the REFUSE should be propagated
 +
      back to the origin, releasing resources as appropriate along
 +
      the way.  If the ReasonCode indicates that
  
        2 map the list of targets onto a set of next-hop ST agents
+
      the CONNECT message did not reach the target then the
            through the routing function,
+
      intermediate (origin) ST agent(s) should check for alternate
 +
      routes to the target before propagating the REFUSE back another
 +
      hop toward the origin. This implies that an agent must keep
 +
      track of the next-hops that it has tried, on a target by target
 +
      basis, in order not to get caught in a loop.
  
        3 reserve the local and network resources required to
+
      An ST agent that receives a REFUSE message must acknowledge it
            support the stream,
+
      by sending an ACK to the next-hop.  The REFUSE must also be
 +
      propagated back to the previous-hop ST agent. Note that the ST
 +
      agent may not have any information about the target in
  
 +
Appl.  Agent A                  Agent 2                Agent E
 +
                                            (proc E NOT listening)
 +
== (add E) ==
 +
== +----->+-> CONNECT E ---------->+->+ ==
 +
              <RVLId=23><SVLId=5>  |  |
 +
              <Ref=65>            V  |
 +
== +<-- ACK <---------------+  | ==
 +
              <RVLId=5><SVLId=23>    V
 +
== <Ref=65>        (routing to E) ==
 +
                                      V
 +
== (reserve resources 2 to E) ==
 +
                                      V
 +
== +--> CONNECT E --------->+ ==
 +
                                          <RVLId=0><SVLId=27> |
 +
                                          <Ref=115><HID=4600> |
 +
                                                              V
 +
== +<-+<- REFUSE B <-----------+ ==
 +
                                  |  |  <RVLId=27><SVLId=74>
 +
                                  |  |  <Ref=705><LnkRef=115>
 +
                                  |  V  <RC=SAPUnknown>
 +
== |  +-> ACK ---------------->+ ==
 +
                                  |  |  <RVLId=74><SVLId=27> |
 +
                                  |  V  <Ref=705>            |
 +
== |  (free link 27)          V ==
 +
10.                                  V              (free link 74)
 +
11.          +<- REFUSE B <-----------+
 +
          |  <RVLId=5><SVLId=23>  |
 +
          |  <Ref=550><LnkRef=65> V
 +
12.          |  <RC=SAPUnknown>  (free resources 2 to E)
 +
          V
 +
13.          +-> ACK  --------------->+
 +
          |  <RVLId=23><SVLId=5>  |
 +
          |  <Ref=550>            V
 +
14.          V            (keep link 23 for C,D)
 +
15.  (keep link 5 for C,D)
 +
  V
 +
16.  (inform application failed SAPUnknown)
  
 +
                Figure 10.  Sending REFUSE Message
  
 +
      the TargetList.  This may result from interacting DISCONNECT
 +
      and REFUSE messages and should be logged and silently ignored.
  
CIP Working Group                                           
+
      If, after deleting the specified target, the next-hop has no
 
+
      remaining targets, then those resources associated with that
RFC 1190                Internet Stream Protocol            October 1990
+
      next-hop agent may be released. Note that network resources
 
+
      may not actually be released if network multicasting is being
 
 
        4  update the FlowSpec, and
 
 
 
        5  propagate the setup information and partitioned target
 
            list to the next-hop ST agents.
 
  
       When a target receives the setup message, it must inquire from the
+
Appl.  Agent A       Agent 2  Agent 1 Agent 3              Agent B
      specified application process whether or not it is willing to
 
      accept the stream, and inform the origin accordingly.
 
  
       Once a stream is established, the origin can safely send data.  ST
+
== (network from 1 to B fails) ==
       and its implementations are optimized to allow fast and efficient
+
== (add B) ==
       forwarding of data packets by the ST agents using the HIDs, even
+
== +-> CONNECT B ----------------->+ ==
       at the cost of adding overhead to stream creation and management.
+
       <RVLId=0><SVLId=6>          |
      Specifically, the forwarding decisions, that is, determining the
+
       <Ref=35><HID=100>          |
      set of next-hop ST agents to which a data packet belonging to a
+
== +<- HID-APPROVE <---------------+ ==
      particular stream will be sent, are made during the stream setup
+
       <RVLId=6><SVLId=11>        |
      phaseThe shorthand HIDs are negotiated at that time, not only
+
       <Ref=35><HID=100>          V
       to reduce the data packet header size, but to access efficiently
+
== (routing to B: no route) ==
       the stream's forwarding informationWhen possible, network-layer
+
                                  V
       multicast is used to forward a data packet to multiple next-hop ST
+
== +<-+-- REFUSE B ----------------+ ==
      agents across a network. Note that when network-layer multicast
+
  |  |  <RVLId=6><SVLId=11>
      is used, all members of the multicast group must participate in
+
  |  |  <Ref=155><LnkRef=35>
      the negotiation of a common HID.
+
  |  V  <RC=NoRouteToDest>
 +
== |  +-> ACK -------------------->+ ==
 +
  |  |  <RVLId=11><SVLId=6>      V
 +
== |  V  <Ref=155>          (drop link 6) ==
 +
== V  (drop link 11) ==
 +
== (find alternative route: via agent 2) ==
 +
10.  (resources from A to 2 already allocated:
 +
  V  reuse control link & HID, no additional resources required)
 +
11+-> CONNECT B -------->+->+
 +
       <RVLId=23><SVLId=5>|  |
 +
       <Ref=40>          V  |
 +
12+<- ACK <--------------+  |
 +
       <RVLId=5><SVLId=23>  V
 +
13.      <Ref=40>    (routing to B: via agent 3)
 +
                        V
 +
14.                        +-> CONNECT B -->+
 +
15.                      <RVLId=0><SVLId=24> +-> CONNECT B --------->+
 +
                      <Ref=245><HID=4801> V  <RVLId=0><SVLId=32> |
 +
16.                        +<- HID-APPROVE -+  <Ref=310><HID=6000> |
 +
                            <RVLId=24><SVLId=33>                |
 +
                            <Ref=245><HID=4801>                  V
 +
17.                                         +<- HID-APPROVE --------+
 +
                                              <RVLId=32><SVLId=45>|
 +
                                              <Ref=310><HID=6000> V
 +
18.       (ACCEPT handling follows normally to complete stream setup)
  
      An established stream can be modified by adding or deleting
+
        Figure 11Routing Around a Failure
      targets, or by changing the network resources allocated to itA
 
      stream may be torn down by either the origin or the targets.  A
 
      target can remove itself from a stream leaving the others
 
      unaffected.  The origin can similarly remove any subset of the
 
      targets from its stream leaving the remainder unaffected.  An
 
      origin can also remove all the targets from the stream and
 
      eliminate the stream in its entirety.
 
  
       A stream is monitored by the involved ST agents.  If they detect a
+
       used since they may still be required for traffic to other
      failure, they can attempt recovery.  In general, this involves
+
       next-hops in the multicast group.
      tearing down part of the stream and rebuilding it to bypass the
 
      failed component(s).  The rebuilding always occurs from the origin
 
      side of the failure.  The origin can optionally specify whether
 
      recovery is to be attempted automatically by intermediate ST
 
      agents or whether a failure should immediately be reported to the
 
      origin.  If automatic recovery is selected but an intermediate
 
      agent determines it cannot effect the repair, it propagates the
 
      failure information backward until it reaches an agent that can
 
      effect repair.  If the failure information propagates back to the
 
      origin, then the application can decide if it should abort or
 
       reattempt the recovery operation.
 
  
 +
      When the REFUSE reaches a origin, the origin sends an ACK and
 +
      notifies the application via the next higher layer protocol
 +
      that the target listed in the TargetList is no longer part of
 +
      the stream and also if the stream has no remaining targets.  If
 +
      there are no remaining targets, the application may wish to
 +
      terminate the stream.
  
 +
      Figure 10 illustrates the protocol exchanges for processing a
 +
      REFUSE generated at the target, either because the target
 +
      application is not running or that the target application
 +
      rejects membership in the stream.  Figure 11 illustrates the
 +
      case of rerouting around a failure by an intermediate agent
 +
      that detects a failure or receives a refuse.  The protocol
 +
      exchanges used by an application at the target to delete itself
 +
      from the stream is discussed in Section 3.3.3 (page 35).
  
 +
3.2.      Data Transfer
  
 +
  At the end of the connection setup phase, the origin, each target,
 +
  and each intermediate ST agent has a database entry that allows it
 +
  to forward the data packets from the origin to the targets and to
 +
  recover from failures of the intermediate agents or networks.  The
 +
  database should be optimized to make the packet forwarding task
 +
  most efficient.  The time critical operation is an intermediate
 +
  agent receiving a packet from the previous-hop agent and
 +
  forwarding it to the next-hop agent(s).  The database entry must
 +
  also contain the FlowSpec, utilization information, the address of
 +
  the origin and previous-hop, and the addresses of the targets and
 +
  next-hops, so it can perform enforcement and recover from
 +
  failures.
  
 +
  An ST agent receives data packets encapsulated by an ST header.  A
 +
  data packet received by an ST agent contains the non-zero HID
 +
  assigned to the stream for the branch from the previous-hop to
 +
  itself.  This HID was selected so that it is unique at the
 +
  receiving ST agent and thus can be used, e.g., as an index into
 +
  the database, to obtain quickly the necessary replication and
 +
  forwarding information.
  
 +
  The forwarding information will be network and implementation
 +
  specific, but must identify the next-hop agent or agents and their
 +
  respective HIDs.  It is suggested that the cached information for
 +
  a next-hop agent include the local network address of the next-
 +
  hop.  If the data packet must be forwarded to multiple next-hops
 +
  across a single network that supports multicast, the database may
 +
  specify a single HID and may identify the next-hops by a (local
 +
  network) multicast address.
  
 +
  If the network does not support multicast, or the next-hops are on
 +
  different networks, then the database must indicate multiple
 +
  (next-hop, HID) tuples.  When multiple copies of the data packet
 +
  must be sent, it may be necessary to invoke a packet replicator.
  
CIP Working Group                                           
+
  Data packets should not require fragmentation as the next higher
 +
  protocol layer at the origin was informed of the minimum MTU over
 +
  all paths in the stream and is expected to segment its PDUs
 +
  accordingly.  However, it may be the case that a data packet that
 +
  is being rerouted around a failed network component may be too
 +
  large for the MTU of an intervening network.  This should be a
 +
  transient condition that will be corrected as soon as the new
 +
  minimum MTU has been propagated back to the origin.  Disposition
 +
  by a mechanism other than dropping of the too large PDUs is left
 +
  for further study.
  
RFC 1190                Internet Stream Protocol            October 1990
+
3.3.      Modifying an Existing Stream
  
 +
  Some applications may wish to change the parameters of a stream
 +
  after it has been created.  Possible changes include adding or
 +
  deleting targets and changing the FlowSpec.  These are described
 +
  below.
  
      Although ST supports an arbitrary connection structure, we
+
  3.3.1.       Adding a Target
      recognize that certain stream topologies will be common and
 
      justify special features, or options, which allow for optimized
 
      support.  These include:
 
 
 
        o  streams with only a single target (see Section 3.6.2 (page
 
            44)), and
 
 
 
        o  pairs of streams to support full duplex communication
 
            between two points (see Section 3.6.3 (page 45)).
 
 
 
      These features allow the most frequently occurring topologies to
 
      be supported with less setup delay, with fewer control messages,
 
      and with less overhead than the more general situations.
 
 
 
 
 
  2.5.      Flow Specifications
 
 
 
      Real time data, such as voice and video, have predictable
 
      characteristics and make specific demands of the networks that
 
      must transfer it.  Specifically, the data may be transmitted in
 
      packets of a constant size that are produced at a constant rate.
 
      Alternatively, the bandwidth may vary, due either to variable
 
      packet size or rate, with a predefined maximum, and perhaps a
 
      non-zero minimum.  The variation may also be predictable based on
 
      some model of how the data is generated.  Depending on the
 
      equipment used to generate the data, the packet size and rate may
 
      be negotiable.  Certain applications, such as voice, produce
 
      packets at the given rate only some of the time.  The networks
 
      that support real time data must add minimal delay and delay
 
      variance, but it is expected that they will be non-zero.
 
 
 
      The FlowSpec is used for three purposes.  First, it is used in the
 
      setup message to specify the desired and minimal packet size and
 
      rate required by the origin.  This information is used by ST
 
      agents when they attempt to reserve the resources in the
 
      intervening networks.  Second, when the setup message reaches the
 
      target, the FlowSpec contains the packet size and rate that was
 
      actually obtained along the path from the origin, and the accrued
 
      mean delay and delay variance expected for data packets along that
 
      path. This information is used by the target to determine if it
 
      wishes to accept the connection.  The target may reduce reserved
 
      resources if it wishes to do so and if the possibility is still
 
      available.  Third, if the target accepts the connection, it
 
      returns the updated FlowSpec to the origin, so that the origin can
 
      decide if it still wishes to participate in the stream with the
 
      characteristics that were actually obtained.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
      When the data transmitted by stream users is generated at varying
 
      rates, including bursts of varying rate and duration, there is an
 
      opportunity to provide service to more subscribers by providing
 
      guaranteed service for the average data rate of each stream, and
 
      reserving additional network capacity, shared among all streams,
 
      to service the bursts.  This concept has been recognized by analog
 
      voice network providers leading to the principle of time assigned
 
      speech interpolation (TASI) in which only the talkspurts of a
 
      speech conversation are transmitted, and, during silence periods,
 
      the circuit can be used to send the talkspurts of other
 
      conversations.  The FlowSpec is intended to assist algorithms that
 
      perform similar kinds of functions.  We do not propose such
 
      algorithms here, but rather expect that this will be an area for
 
      experimentation.  To allow for experiments, and a range of ways
 
      that application traffic might be characterized, a "DutyFactor" is
 
      included in the FlowSpec and we expect that a "burst descriptor"
 
      will also be needed.
 
 
 
      The FlowSpec will need to be revised as experience is gained with
 
      connections involving numerous participants using multiple media
 
      across heterogeneous internetworks.  We feel a change of the
 
      FlowSpec does not necessarily require a new version of ST, it only
 
      requires the FlowSpec version number be updated and software to
 
      manage the new FlowSpec to be distributed.  We further suggest
 
      that if the change to the FlowSpec involves additional information
 
      for improved operation, such as a burst descriptor, that it be
 
      added to the end of the FlowSpec and that the current parameters
 
      be maintained so that obsolete software can be used to process the
 
      current parameters with minimum modifications.
 
  
 +
      It is possible for an application to add a new target to an
 +
      existing stream any time after ST has incorporated information
 +
      about the stream into its database.  At a high level, the
 +
      application entities exchanges whatever information is
 +
      necessary.  Although the mechanism or protocol used to
 +
      accomplish this is not specified here, it is necessary for the
 +
      higher layer protocol to inform the host ST agent at the origin
 +
      of this event.  The host ST agent at the target must also be
 +
      informed unless this had previously been done.  Generally, the
 +
      transfer of a target list from an ST agent to another, or from
 +
      a higher layer protocol to a host ST agent, will occur
 +
      atomically when the CONNECT is received.  Any information
 +
      concerning a new target received after this point can be viewed
 +
      as a stream expansion by the receiving ST agent.  However, it
 +
      may be possible that an ST agent can utilize such information
 +
      if it is received before it makes the relevant routing
 +
      decisions.  These implementation details are not specified
 +
      here, but implementations must be prepared to receive CONNECT
 +
      messages that represent expansions of streams that are still in
 +
      the process of being setup.
  
 +
      To expand an existing stream, the origin issues one or more
 +
      CONNECT messages that contain the Name, the VLId, the FlowSpec,
 +
      and the TargetList specifying the new target or targets.  The
 +
      origin issues multiple CONNECT messages if
  
 +
      either the targets are to be reached through different next-hop
 +
      agents, or a single CONNECT message is too large for the
 +
      network MTU.  The HID Field option is not set since the HID has
 +
      already been (or is being) negotiated for the hop;
 +
      consequently, the CONNECT is acknowledged with an ACK instead
 +
      of a HID-REJECT or HID-APPROVE.
  
 +
Application  Agent A              Agent 2                    Agent E
  
 +
== (open E) ==
 +
== V                                            (proc E listening) ==
 +
== +->(routing to E) ==
 +
        V
 +
== +-> (check resources from A to Agent 2: already allocated, ==
 +
        V  reuse control link & HID, no additional resources needed)
 +
== +-> CONNECT E --------->+->+ ==
 +
            <RVLId=23><SVLId=5> |  V
 +
== <Ref=20>            V  (routing to E) ==
 +
== +<- ACK <---------------+  V ==
 +
            <RVLId=5><SVLId=23>    +->(reserve resources 2 to E)
 +
            <Ref=20>                  V
 +
== +-> CONNECT E --------->+ ==
 +
                                          <RVLId=0><SVLId=27> |
 +
                                          <Ref=230><HID=4800> |
 +
== +<- HID-APPROVE <-------+ ==
 +
                                          <RVLId=27><SVLId=74>|
 +
                                          <Ref=230><HID=4800> V
 +
10.                                              (proc E accepts)
 +
11.                                    (wait until HID negotiated)
 +
                                                              V
 +
12.                                  +<-+<- ACCEPT E <----------+
 +
                                  V  |  <RVLId=27><SVLId=74>
 +
13.                  (wait for ACCEPTS)  V  <Ref=710><LnkRef=230>
 +
14.                                  V  +-> ACK --------------->+
 +
15.      (wait until HID negotiated)<-+      <RVLId=74><SVLId=27>
 +
                                V        <Ref=710>
 +
16.          +<- ACCEPT E <-------+
 +
          |  <RVLId=5><SVLId=23>
 +
          V  <Ref=235><LnkRef=20>
 +
17.          +-> ACK ------------>+
 +
          |  <RVLId=23><SVLId=5>
 +
          V  <Ref=235>
 +
18.        +<-(inform A of E's FlowSpec)
 +
        V
 +
19.    +<-(wait for ACCEPTS)
 +
    V
 +
20.  +<-(wait until HID negotiated)
 +
  V
 +
21.  (inform A open to E)
  
 +
              Figure 12.  Addition of Another Target
  
 +
      An ST agent that is already a node in the stream recognizes the
 +
      RVLId and verifies that the Name of the stream is the same.  It
 +
      then checks if the intersection of the TargetList and the
 +
      targets of the established stream is empty.  If this is not the
 +
      case, then the receiver responds with an ERROR-IN-REQUEST with
 +
      the appropriate reason code (RouteLoop) that contains a
 +
      TargetList of those targets that were duplicates;  see Section
 +
      4.2.3.5 (page 106).
  
 +
      For each new target in the TargetList, processing is much the
 +
      same as for the original CONNECT;  see Sections 3.1.2-4 (pages
 +
      19-20).  The CONNECT must be acknowledged, propagated, and
 +
      network resources must be reserved.  However, it may be
 +
      possible to route to the new targets using previously allocated
 +
      paths or an existing multicast group.  In that case, additional
 +
      resources do not need to be reserved but more next-hop(s) might
 +
      have to be added to an existing multicast group.
  
 +
      Nevertheless, the origin, or any intermediate ST agent that
 +
      receives a CONNECT for an existing stream, can make a routing
 +
      decision that is independent of any it may have made
 +
      previously.  Depending on the routing algorithm that is used,
 +
      the ST agent may decide to reach the new target by way of an
 +
      established branch, or it may decide to create a new branch.
 +
      The fact that a new target is being added to an existing stream
 +
      may result in a suboptimal overall routing for certain routing
 +
      algorithms.  We take this problem to be unavoidable since it is
 +
      unlikely that the stream routing can be made optimal in
 +
      general, and the only way to avoid this loss of optimality is
 +
      to redefine the routing of potentially the entire stream, which
 +
      would be too expensive and time consuming.
  
 +
  3.3.2.        The Origin Removing a Target
  
 +
      The application at the origin specifies a set of targets that
 +
      are to be removed from the stream and an appropriate reason
 +
      code (ApplDisconnect).  The targets are partitioned into
 +
      multiple DISCONNECT messages based on the next-hop to the
 +
      individual targets.  As with CONNECT messages, an ST agent that
 +
      is sending a DISCONNECT must make sure that the message fits
 +
      into the MTU for the intervening network.  If the message is
 +
      too large, the TargetList must be further partitioned into
 +
      multiple DISCONNECT messages.
  
 +
      An ST agent that receives a DISCONNECT message must acknowledge
 +
      it by sending an ACK back to the previous-hop.  The DISCONNECT
 +
      must also be propagated to the relevant next-hop ST agents.
 +
      Before propagating the message, however, the TargetList should
 +
      be partitioned based on next-hop ST
  
 +
      agent and MTU, as described above.  Note that there may be
 +
      targets in the TargetList for which the ST agent has no
 +
      information.  This may result from interacting DISCONNECT and
 +
      REFUSE messages and should be logged and silently ignored.
  
 +
      If, after deleting the specified targets, any next-hop has no
 +
      remaining targets, then those resources associated with that
 +
      next-hop agent may be released.  Note that network resources
 +
      may not actually be released if network multicasting is being
 +
      used since they may still be required for traffic to other
 +
      next-hops in the multicast group.
  
 +
  Application                                        Application
 +
        Agent A            Agent 1  Agent 2          Agent B    C
  
 +
  1.  (close B,C ApplDisconnect)
 +
      V
 +
  2.      +->+-+-> DISCONNECT B ----->+
 +
  3.        | |  <RVLId=14><SVLId=4>+-+-> DISCONNECT B ------>+
 +
          | |  <Ref=25>          | |  <RVLId=44><SVLId=15>|
 +
          | V  <RC=ApplDisconnect>| |  <Ref=120>          |
 +
  4.        | (free A to 1 resrc.)  | V  <RC=ApplDisconnect> |
 +
  5.        |                        V (free 1 to B resrc.)    |
 +
  6.        | +<- ACK <--------------+                        V
 +
  7.        | |  <RVLId=4><SVLId=14>| +<- ACK <---------------+
 +
          | V  <Ref=25>          | |  <RVLId=15><SVLId=44>|
 +
  8.        | (free link 4)          V |  <Ref=120>          |
 +
  9.        |          (free link 14) V                      |
 +
  10.        |                          (free link 15)          V
 +
  11.        |        (inform B that stream closed ApplDisconnect)
 +
  12.        |                                    (free link 44)
 +
          V
 +
  13.    +<-+-+-> DISCONNECT C ---------->+
 +
  14.    |    |  <RVLId=23><SVLId=5>    +-+-> DISCONNECT C ------>+
 +
      |    |  <Ref=30>                | |  <RVLId=54><SVLId=25>|
 +
      |    V  <RC=ApplDisconnect>    | |  <Ref=240>          |
 +
  15.    |    (keep A to 2 resrc for      | V  <RC=ApplDisconnect> |
 +
  16.    |        data going to D,E)    | (free 2 to C resrc.)    |
 +
      |                                V                        |
 +
  17.    |    +<- ACK <-------------------+                        V
 +
  18.    |    |  <RVLId=5><SVLId=23>    | +<- ACK <---------------+
 +
      |    V  <Ref=30>                | |  <RVLId=25><SVLId=54>|
 +
  19.    |    (keep link 5 for D,E)      V |  <Ref=240>          |
 +
  20.    |          (keep link 23 for D,E) V                      |
 +
  21.    |                          (free link 25)                V
 +
  22.    |              (inform C that stream closed ApplDisconnect>)
 +
  23.    V                                            (free link 54)
 +
  24.    (inform A closed to B,C ApplDisconnect)
  
 +
              Figure 13.  Origin Removing a Target
  
 +
      When the DISCONNECT reaches a target, the target sends an ACK
 +
      and notifies the application that it is no longer part of the
 +
      stream and the reason.  The application should then inform ST
 +
      to terminate the stream, and ST should delete the stream from
 +
      its database after performing any necessary management and
 +
      accounting functions.
  
 +
  3.3.3.        A Target Deleting Itself
  
 +
      The application at the target may inform ST that it wants to be
 +
      removed from the stream and the appropriate reason code
 +
      (ApplDisconnect).  The agent then forms a REFUSE message with
 +
      itself as the only entry in the TargetList.  The REFUSE is sent
 +
      back to the origin via the previous-hop.  If a stream has
 +
      multiple targets and one target leaves the stream using this
 +
      REFUSE mechanism, the stream to the other targets is not
 +
      affected;  the stream continues to exist.
  
 +
      An ST agent that receives such a REFUSE message must
 +
      acknowledge it by sending an ACK to the next-hop.  The target
 +
      is deleted and, if the next-hop has no remaining targets, then
 +
      the those resources associated with that next-hop agent may be
 +
      released.  Note that network resources may not actually be
 +
      released if network multicasting is being used since they may
 +
      still be required for traffic to other next-hops in the
 +
      multicast group.  The REFUSE must also be propagated back to
 +
      the previous-hop ST agent.
  
 +
              Agent A          Agent 2          Agent E
  
 +
        1.                            (close E ApplDisconnect)
 +
                                                  V
 +
        2.                        +<- REFUSE E --+
 +
                                    |  <RVLId=27><SVLId=74>
 +
                                    |  <Ref=720>
 +
                                    V  <RC=ApplDisconnect>
 +
        3.                      +<-+-> ACK ------>+
 +
                                |  |  <RVLId=74><SVLId=27>
 +
        4.                      V  V  <Ref=720>
 +
        5.    +<-+<- REFUSE E --+  (prune allocations)
 +
              |  |  <RVLId=5><SVLId=23>
 +
              |  |  <Ref=245>
 +
              |  V  <RC=ApplDisconnect>
 +
        6.    |  +-> ACK ------>+
 +
              |  |  <RVLId=23><SVLId=5>
 +
              |  V  <Ref=245>
 +
        7.    V  (prune allocations)
 +
        8.    (inform application closed E ApplDisconnect)
  
 +
                Figure 14.  Target Deleting Itself
  
CIP Working Group                                           
+
      When the REFUSE reaches the origin, the origin sends an ACK and
 +
      notifies the application that the target listed in the
 +
      TargetList is no longer part of the stream.  If the stream has
 +
      no remaining targets, the application may choose to terminate
 +
      the stream.
  
RFC 1190                Internet Stream Protocol            October 1990
+
  3.3.4.        Changing the FlowSpec
  
 +
      An application may wish to change the FlowSpec of an
 +
      established stream.  To do so, it informs ST of the new
 +
      FlowSpec and the list of targets that are to be changed.  The
 +
      origin ST agent then issues one or more CHANGE messages with
 +
      the new FlowSpec and sends them to the relevant next-hop
 +
      agents.  CHANGE messages are structured and processed similarly
 +
      to CONNECT messages.  A next-hop agent that is an intermediate
 +
      agent and receives a CHANGE message similarly determines if it
 +
      can implement the new FlowSpec along the hop to each of its
 +
      next-hop agents, and if so, it propagates the CHANGE messages
 +
      along the established paths.  If this process succeeds, the
 +
      CHANGE messages will eventually reach the targets, which will
 +
      each respond with an ACCEPT message that is propagated back to
 +
      the origin.
  
                      ****                      ****
+
       Note that since a CHANGE may be sent containing a FlowSpec with
                    *    *    ST Agent 1    *    *      +---+
+
       a range of permissible values for bandwidth, delay, and/or
                    *      *------- o ---------*    *-------+ B |
+
       error rate, and the actual values returned in the ACCEPTs may
                    *      *                  *    *      +---+
+
       differ, then another CHANGE may be required to release excess
                    *      *                    ****
+
       resources along some of the paths.
      +---+        *      *                    |
 
      |  |        *      *                    |
 
       | A +---------*      *                    o ST Agent 3
 
       |  |        *      *                    |
 
       +---+        *      *                    |
 
                    *      *                    ***
 
                    *      *                  *  *        +---+
 
                    *      *    ST Agent 2    *    *-------+ C |
 
                    *      *------- o --------*    *       +---+
 
                    *    *                  *    *
 
                      ****                    *    *
 
                                              *    *
 
                                +---+        *    *       +---+
 
                                | E +--------*    *-------+ D |
 
                                +---+        *  *        +---+
 
                                                ***
 
  
        Figure 2. Topology Used in Protocol Exchange Diagrams
+
3.4.      Stream Tear Down
  
 +
  A stream is usually terminated by the origin when it has no
 +
  further data to send, but may also be partially torn down by the
 +
  individual targets.  These cases will not be further discussed
 +
  since they have already been described in Sections 3.3.2-3 (pages
 +
  33-35).
  
 +
  A stream is also torn down if the application should terminate
 +
  abnormally.  Processing in this case is identical to the previous
 +
  descriptions except that the appropriate reason code is different
 +
  (ApplAbort).
  
 +
  When all targets have left a stream, the origin notifies the
 +
  application of that fact, and the application then is responsible
 +
  for terminating the stream.  Note, however, that the application
 +
  may decide to add a target(s) to the stream instead of terminating
 +
  it.
  
 +
3.5.      Exceptional Cases
  
 +
  The previous descriptions covered the simple cases where
 +
  everything worked.  We now discuss what happens when things do not
 +
  succeed.  Included are situations where messages are lost, the
 +
  requested resources are not available, the routing fails or is
 +
  inconsistent.
  
                      ****    ST Agent 1      ****
+
  In order for the ST Control Message Protocol to be reliable over
                    * +--+---14--- o -----15--+----+--44---+---+
+
  an unreliable internetwork, the problems of corruption,
                    * | +-+--11---  -----16--+-+ *      | B |
+
  duplication, loss, and ordering must be addressed. Corruption is
                    * | | *                  * |+-+--45---+---+
+
  handled through use of checksumming, as described in Section 4
                    * | | *                    *++*
+
  (page 76). Duplication of control messages is detected by
      +---+        * | | *                  34 ||32
+
  assigning a transaction number (Reference) to each control
      |  +----4----+--+ | *                    ||
+
  message; duplicates are discarded.  Loss is detected using a
      | A +----6----+----+ *                    o ST Agent 3
+
  timeout at the sender; messages that are not acknowledged before
      |  +----5----+---+ *                    |
+
  the timeout expires are retransmitted; see Section 3.7.6 (page
      +---+        *  | *                    | 33
+
  66). If a message is not acknowledged after a few retransmissions
                    *  | *      ST          *+*
+
  a fault is reported. The protocol does not have significant
                    *  |  *      Agent        * | *
+
  ordering constraints. However, minor sequencing of control
                    *  | *        2 -----24-+--+  *      +---+
+
  messages for a stream is facilitated by the requirement that the
                    *  +--+--23--- o -----25-+-----+--54---+ C |
+
  Reference numbers be monotonically increasing; see Section 4.2
                    *   *          -----26-+---+ *      +---+
+
   (page 78).
                      ****            -----27-+-+ | *
 
                                              * | | *
 
                                +---+        * | | *      +---+
 
                                | E +---74---+-+ +-+--64---+ D |
 
                                +---+        *  *        +---+
 
                                                ***
 
  
        Figure 3. Virtual Link Identifiers for SCMP Messages
+
  3.5.1.        Setup Failure due to CONNECT Timeout
  
 +
      If a response (an ERROR-IN-REQUEST, an ACK, a HID-REJECT, or a
 +
      HID-APPROVE) has not been received within time ToConnect, the
 +
      ST agent should retransmit the CONNECT message.  If no response
 +
      has been received within NConnect retransmissions, then a fault
 +
      occurs and a REFUSE message with the appropriate reason code
 +
      (RetransTimeout) is sent back in the direction of the origin,
 +
      and, in place of the CONNECT, a DISCONNECT is sent to the
 +
      next-hop (in case the response to the CONNECT is the message
 +
      that was lost).  The agent will expect an ACK for both the
 +
      REFUSE and the DISCONNECT messages.  If it does not receive an
 +
      ACK after retransmission time ToRefuse and ToDisconnect
 +
      respectively, it will resend the REFUSE/DISCONNECT message.  If
 +
      it does not receive ACKs after sending NRefuse/ NDisconnect
 +
      consecutive REFUSE/DISCONNECT messages, then it simply gives up
 +
      trying.
  
CIP Working Group                                           
+
      Sending Agent              Receiving Agent
  
RFC 1190               Internet Stream Protocol            October 1990
+
1.  ->+----> CONNECT X ------>//// (message lost or garbled)
 +
        |      <RVLId=0><SVLId=99>
 +
        V      <Ref=1278><HID=1234>
 +
2. (timeout)
 +
        V
 +
3.    +----> CONNECT X ------------>+
 +
4.    |      <RVLId=0><SVLId=99>    +----> CONNECT X ----------->+
 +
        |      <Ref=1278><HID=1234>  V      <RVLId=0><SVLId=1010> |
 +
5.    | //<- HID-APPROVE <----------+      <Ref=6666><HID=6666>  V
 +
6.    |      <RVLId=99><SVLId=88>      +<- HID-APPROVE <---------+
 +
        V      <Ref=1278><HID=1234>          <RVLId=1010><SVLId=1111>
 +
7. (timeout)                                <Ref=6666><HID=6666>
 +
        V
 +
8.    +----> CONNECT X ------------>+
 +
               <RVLId=0><SVLId=99>    |
 +
              <Ref=1278><HID=1234>  V
 +
9.    +<-+<- HID-APPROVE <----------+
 +
        |      <RVLId=99><SVLId=88>
 +
        V      <Ref=1278><HID=1234>
 +
  (cancel timer)
  
 +
        Figure 15.  CONNECT Retransmission after a Timeout
  
3.     ST Control Message Protocol Functional Description
+
  3.5.2.        Problems due to Routing Inconsistency
  
  This section contains a functional description of the ST Control
+
      When an intermediate agent receives a CONNECT, it selects the
  Message Protocol (SCMP); Section 4 (page 75) specifies the formats of
+
      next-hop agents based on the TargetList and the networks to
  the control message PDUsWe begin with a description of stream
+
      which it is connectedIf the resulting next-hop to any of the
  setup.  Mechanisms used to deal with the exceptional cases are then
+
      targets is across the same network from which it received the
  presented.  Complications due to options that an application or a ST
+
      CONNECT (but not the previous-hop itself), there may be a
  agent may select are then detailedOnce a stream has been
+
      routing problemHowever, the routing algorithm at the
  established, the data transfer phase is entered; it is described.
+
      previous-hop may be optimizing differently than the local
  Once the data transfer phase has been completed, the stream must be
+
      algorithm would in the same situationSince the local ST
  torn down and resources released; the control messages used to
+
      agent cannot distinguish the two cases, it should permit the
  perform this function are presentedThe resources or participants
+
      setup but send back to the previous-hop agent an informative
  of a stream may be changed during the lifetime of the stream; the
+
      NOTIFY message with the appropriate reason code (RouteBack),
  procedures to make changes are described.  Finally, the section
+
      pertinent TargetList, and in the NextHopIPAddress element the
  concludes with a description of some ancillary functions, such as
+
      address of the next-hop ST agent returned by its routing
  failure detection and recovery, HID negotiation, routing, security,
+
      algorithm.
  etc.
 
  
  To help clarify the SCMP exchanges used to setup and maintain ST
+
      The agent that receives such a NOTIFY should ACK it.  If the
  streams, we have included a series of figures in this section.  The
+
      agent is using an algorithm that would produce such behavior,
  protocol interactions in the figures assume the topology shown in
+
      no further action is taken;  if not, the agent should send a
  Figure 2. The figures, taken together,
+
      DISCONNECT to the next-hop agent to correct the problem.
  
    o Create a stream from an application at A to three peers at B,
+
      Alternatively, if the next-hop returned by the routing function
      C and D,
+
      is in fact the previous-hop, a routing inconsistency has been
 +
      detected. In this case, a REFUSE is sent back to
  
    o Add a peer at E,
+
      the previous-hop agent containing an appropriate reason code
 +
      (RouteInconsist), pertinent TargetList, and in the
 +
      NextHopIPAddress element the address of the previous-hop.  When
 +
      the previous-hop receives the REFUSE, it will recompute the
 +
      next-hop for the affected targets. If there is a difference in
 +
      the routing databases in the two agents, they may exchange
 +
      CONNECT and REFUSE messages again.  Since such routing errors
 +
      in the internet are assumed to be temporary, the situation
 +
      should eventually stabilize.
  
    o  Disconnect peers B and C, and
+
  3.5.3.        Setup Failure due to a Routing Failure
  
    o  D drops out of the stream.
+
      It is possible for an agent to receive a CONNECT message that
 +
      contains a known Name, but from an agent other than the
 +
      previous-hop agent of the stream with that Name. This may be:
  
  Other figures illustrate exchanges related to failure recovery.
+
      1  that two branches of the tree forming the stream have
 +
          joined back together,
  
  In order to make the dispatch function within SCMP more uniform and
+
      2 a deliberate source routing loop,
  efficient, each end of a hop is assigned, by the agent at that end, a
 
  Virtual Link Identifier that uniquely (within that agent) identifies
 
  the hop and associates it with a particular stream's state
 
  machine(s).  The identifier at the end of a link that is sending a
 
  message is called the Sender Virtual Link Identifier (SVLId);  that
 
  at the receiving end is called the Receiver Virtual Link Identifier
 
  (RVLId). Whenever one agent sends a control message for the other to
 
  receive, the sender will place the receiver's identifier into the
 
  RVLId field of the message and its own identifier in the SVLId field.
 
  When a reply to the message is sent, the values in SVLId and RVLId
 
  fields will be reversed, reflecting the fact the sender and receiver
 
  roles are reversed.  VLIds with values zero through three are
 
  received and should not be assigned in response to CONNECT messages.
 
  Figure 3 shows the hops that will be used in the examples and
 
  summarizes the VLIds that will be assigned to them.
 
  
 +
      3  the result of an attempted recovery of a partially
 +
          failed stream, or
  
 +
      4  an erroneous routing loop.
  
 +
      The TargetList is used to distinguish the cases 1 and 2 (see
 +
      also Section 4.2.3.5 (page 107)) by comparing each newly
 +
      received target with those of the previously existing stream:
  
CIP Working Group                                           
+
      o  if the IP address of the targets differ, it is case 1;
  
RFC 1190                Internet Stream Protocol            October 1990
+
      o  if the IP address of the targets match but the source
 +
          route(s) are different, it is case 2;
  
 +
      o  if the target (including any source route) matches a
 +
          target (including any source route) in the existing
 +
          stream, it may be case 3 or 4.
  
  Similarly, Figure 4 summarizes the HIDs that will eventually be
+
      It is expected that the joining of branches will become more
  negotiated as the stream is created.
+
      common as routing decisions are based on policy issues and not
 +
      just simple connectivity.  Unfortunately, there is no good way
 +
      to merge the two parts of the stream back into a single stream.
 +
      They must be treated independently with respect to processing
 +
      in the agent.  In particular, a separate state machine is
 +
      required, the Virtual Link Identifiers and HIDs from the
 +
      previous-hops and to the next-hops must be different, and
 +
      duplicate resources must be reserved in both the agent and in
 +
      any next-hop networks.  Processing is the same for a deliberate
 +
      source routing loop.
  
                      ****    ST Agent 1       ****
+
       The remaining cases requiring recovery, a partially failed
                    *  +>+--1200-> o -------->+--->+-3600->+---+
+
       stream and an erroneous routing loop, are not easily
                    *  ^  *                  *    *       | B |
+
       distinguishable. In attempting recovery of a failed stream, an
                    *  |  *                  * +->+-6000->+---+
+
       agent may issue new CONNECT messages to the affected targets;
                    *  |  *                    *+**
+
       for a full explanation see also Section 3.7.2 (page 51),
       +---+        *  | *                    ^
+
       Failure Recovery. Such a CONNECT may reach an agent downstream
       |  +-------->+-->+  *                    |
+
       of the failure before that agent has received a DISCONNECT from
       | A |        *      *                    o St Agent 3
+
      the neighborhood of the failure. Until that agent receives the
       |  +-------->+-->+ *                    ^
+
      DISCONNECT, it cannot distinguish between a failure recovery
       +---+        *  |  *                    | 4801
+
      and an erroneous routing loop. That agent must therefore
                    *  | *                    *+*
+
      respond to the CONNECT with a REFUSE message with the affected
                    *  V  *  ST Agent 2      * ^ *        +---+
+
      targets specified in the TargetList and an appropriate reason
                    * +>+--2400-> o ------->+->+->+-4800->+ C |
+
       code (StreamExists).
                      ****                    *  |  * 4801  +---+
 
                                              *  |  *
 
                                +---+        *  V  *       +---+
 
                                | E +<-4800--+<-+->+-4800->+ D |
 
                                +---+        *  *  4801  +---+
 
                                                ***
 
  
            Figure 4HIDs Assigned for ST User Packets
+
      The agent immediately preceding that point, i.e., the latest
 +
      agent to send the CONNECT message, will receive the REFUSE
 +
      messageIt must release any resources reserved exclusively
 +
      for traffic to the listed targets.  If this agent was not the
 +
      one attempting the stream recovery, then it cannot distinguish
 +
      between a failure recovery and an erroneous routing loop.  It
 +
      should repeat the CONNECT after a ToConnect timeout.  If after
 +
      NConnect retransmissions it continues to receive REFUSE
 +
      messages, it should propagate the REFUSE message toward the
 +
      origin, with the TargetList that specifies the affected
 +
      targets, but with a different error code (RouteLoop).
  
 +
      The REFUSE message with this error code (RouteLoop) is
 +
      propagated by each ST agent without retransmitting any CONNECT
 +
      messages.  At each agent, it causes any resources reserved
 +
      exclusively for the listed targets to be released.  The REFUSE
 +
      will be propagated to the origin in the case of an erroneous
 +
      routing loop.  In the case of stream recovery, it will be
 +
      propagated to the ST agent that is attempting the recovery,
 +
      which may be an intermediate agent or the origin itself.  In
 +
      the case of a stream recovery, the agent attempting the
 +
      recovery may issue new CONNECT messages to the same or to
 +
      different next-hops.
  
  Some of the diagrams that follow form a progression.  For example,
+
      If an agent receives both a REFUSE message and a DISCONNECT
  the steps required initially to establish a connection are spread
+
      message with a target in common then it can release the
  across five figures.  Within a progression, the actions on the first
+
      relevant resources and propagate neither the REFUSE nor the
  diagram are numbered 1.1, 1.2, etc.;  within the second diagram they
+
      DISCONNECT (however, we feel that it is unlikely that most
  are numbered 2.1, 2.2, etc.  Points where control leaves one diagram
+
      implementations will be able to detect this situation).
  to enter another are identified with a continuation arrow "-->>", and
 
  are continued with "[a.b] >>-->" in the other diagram.  The number in
 
  brackets shows the label where control left the earlier diagram.  The
 
  reception of simple acknowledgments, e.g., ACKs, in one figure from
 
  another is omitted for clarity.
 
  
 +
      If the origin receives such a REFUSE message, it should attempt
 +
      to send a new CONNECT to all the affected targets.  Since
 +
      routing errors in an internet are assumed to be temporary, the
 +
      new CONNECTs will eventually find acceptable routes to the
 +
      targets, if one exists.  If no further routes exist after
 +
      NRetryRoute tries, the application should be
  
  3.1.       Stream Setup
+
      informed so that it may take whatever action it deems
 +
      necessary.
  
 +
  3.5.4.        Problems in Reserving Resources
  
       This section presents a description of stream setup assuming that
+
       If the network or ST agent resources are not available, an ST
       everything succeeds -- HIDs are approved, any required resources
+
      agent may preempt one or more streams that have lower
       are available, and the routing is correct.
+
      precedence than the one being created.  When it breaks a lower
 +
      precedence stream, it must issue REFUSE and DISCONNECT messages
 +
      as described in Sections 4.2.3.15 (page 122) and 4.2.3.6 (page
 +
       110).  If there are no streams of lower precedence, or if
 +
      preempting them would not provide sufficient resources, then
 +
       the stream cannot be accepted by the ST agent.
  
 +
      If an intermediate agent detects that it cannot allocate the
 +
      necessary resources, then it sends a REFUSE that contains an
 +
      appropriate reason code (CantGetResrc) and the pertinent
 +
      TargetList to the previous-hop ST agent.  For further study are
 +
      issues of reporting what resources are available, whether the
 +
      resource shortage is permanent or transitory, and in the latter
 +
      case, an estimate of how long before the requested resources
 +
      might be available.
  
      3.1.1.        Initial Setup at the Origin
+
  3.5.5.        Setup Failure due to ACCEPT Timeout
  
        As described in Section 2.3 (page 11), the application has
+
      An ST agent that propagates an ACCEPT message backward toward
        collected the information necessary to determine the
+
      the origin expects an ACK from the previous-hop.  If it does
 +
      not receive an ACK within a timeout, called ToAccept, it will
 +
      retransmit the ACCEPT.  If it does not receive an ACK after
 +
      sending a number, called NAccept, of ACCEPT messages, then it
 +
      will replace the ACCEPT with a REFUSE, and will send a
 +
      DISCONNECT in the direction toward the target.  Both the REFUSE
 +
      and DISCONNECT will identify the affected target(s) and specify
 +
      an appropriate reason code (AcceptTimeout).  Both are also
 +
      retransmitted until ACKed with timeout ToRefuse/ ToDisconnect
 +
      and retransmit count NRefuse/NDisconnect.  If they are not
 +
      ACKed, the agent simply gives up, letting the failure detection
 +
      mechanism described in Section 3.7.1 (page 48) take care of any
 +
      cleanup.
  
 +
  3.5.6.        Problems Caused by CHANGE Messages
  
 +
      An application must exercise care when changing a FlowSpec to
 +
      prevent a failure.  A CHANGE might fail for two reasons.  The
 +
      request may be for a larger amount of network resources when
 +
      those resources are not available;  this failure may be
 +
      prevented by requiring that the current level of service be
 +
      contained within the ranges of the FlowSpec in the CHANGE.
  
 +
      Alternatively, the local network might require all the former
 +
      resources to be released before the new ones are requested and,
 +
      due to unlucky timing, an unrelated request for network
 +
      resources might be processed between the time the resources are
 +
      released and the time the new resources are requested, so that
 +
      the former resources are no longer available.  There is not
 +
      much that an application or ST can do to prevent such failures.
  
CIP Working Group                                           
+
      If the attempt to change the FlowSpec fails then the ST agent
 +
      where the failure occurs must intentionally break the stream
 +
      and invoke the stream recovery mechanism using REFUSE and
 +
      DISCONNECT messages;  see Section 3.7.2 (page 51).  Note that
 +
      the reserved resources after the failure of a CHANGE may not be
 +
      the same as before, i.e., the CHANGE may have been partially
 +
      completed.  The application is responsible for any cleanup
 +
      (another CHANGE).
  
RFC 1190                Internet Stream Protocol            October 1990
+
  3.5.7.        Notification of Changes Forced by Failures
  
 +
      NOTIFY is issued by a an ST Agent to inform upsteam agents and
 +
      the origin that resource allocation changes have occurred after
 +
      a stream was established.  These changes occur when network
 +
      components fail and when competing streams preempt resources
 +
      previously reserved by a lower precedence stream.  We also
 +
      anticipate that NOTIFY can be used in the future when
 +
      additional resources become available, as is the case when
 +
      network components recover or when higher precedence streams
 +
      are deleted.
  
        participants in the communication before passing it to the host
+
      NOTIFY is also used to inform upstream agents that a routing
        ST agent at the originThe host ST agent will take this
+
      anomaly has occurredSuch an example was cited in Section
        information, allocate a Name for the stream (see Section
+
      3.5.2 (page 38), where an agent notices that the next-hop agent
        4.2.2.8 (page 87)), and create a stream.
+
      is on the same network as the previous-hop agent;  the anomaly
 +
      is that the previous-hop should have connected directly to the
 +
      next-hop without using an intermediate agent.  Delays in
 +
      propagating host status and routing information can cause such
 +
      anomalies to occur.  NOTIFY allows ST to correct automatically
 +
      such mistakes.
  
 +
      NOTIFY reports a FlowSpec that reflects that revised guarantee
 +
      that can be promised to the stream.  NOTIFY also
  
       3.1.2.       Invoking the Routing Function
+
       identifies those targets affected by the change. In this way,
 +
      NOTIFY is similar to ACCEPT. NOTIFY includes a ReasonCode to
 +
      identify the event that triggered the notification.  It also
 +
      includes a TargetList, rather than a single Target, since a
 +
      single event can affect a branch leading to several targets.
  
        An ST agent that is setting up a stream invokes a routing
+
      NOTIFY is relayed by the ST agents back toward the origin,
        function to find a path to reach each of the targets specified
+
      along the path established by the CONNECT but in the reverse
        in the TargetListThis is similar to the routing decision in
+
      direction.  NOTIFY must be acknowledged with an ACK at each
        IPHowever, in this case the route is to a multitude of
+
      hop.  If intermediate agent corrects the situation without
        targets rather than to a single destination.
+
      causing any disruption to the data flow or guarantees, it can
 +
      choose to drop the notification message before it reaches the
 +
      originIf the originating agent receives a NOTIFY, it is then
 +
      expected to adjust its own processing and data rates, and to
 +
      submit any required CHANGE requestsAs with ACCEPT, the
 +
      FlowSpec is not modified on this trip from the target back to
 +
      the origin.  It is up to the origin to decide whether a CHANGE
 +
      should be submitted. (However, even though the FlowSpec has
 +
      not been modified, the situation reported in the
  
        The set of next-hops that an ST agent would select is not
+
Application Agent A            Agent 1                    Agent B
        necessarily the same as the set of next hops that IP would
 
        select given a number of independent IP datagrams to the same
 
        destinations. The routing algorithm may attempt to optimize
 
        parameters other than the number of hops that the packets will
 
        take, such as delay, local network bandwidth consumption, or
 
        total internet bandwidth consumption.
 
  
        The result of the routing function is a set of next-hop ST
+
1.                      (high precedence request preempts 10K of
        agents and the parameters of the intervening network(s).  The
+
                          the stream's original 30Kb bandwidth
        latter permit the ST agent to determine whether the selected
+
                          allocated to the hop from 1 to B)
        network has the resources necessary to support the level of
+
                                  |
        service requested in the FlowSpec.
+
                                  V
 +
2.  +<------+-- NOTIFY -------------+
 +
  |      |  <RVLId=4><SVLId=14>
 +
  |      |  <Ref=150>
 +
  |      V  <FlowSpec=20Kb,...><TargList=B>
 +
3.  |      +-> ACK --------------->+
 +
  |          <RVLId=14><SVLId=4>
 +
  V          <Ref=150>
 +
4. (inform application)
 +
  ....
 +
  5. change(FlowSpec=20Kb,...)
 +
  V
 +
6.  +---------> CHANGE B ---------->+
 +
7.              <RVLId=14><SVLId=4> +--> CHANGE B ------------>+->+
 +
              <Ref=60>            |    <RVLId=44><SVLId=15>  |  |
 +
              <FlowSpec=20Kb,...> V    <Ref=160>            |  |
 +
8.          +<- ACK ----------------+    <FlowSpec=20Kb,...>  |  |
 +
              <RVLId=4><SVLId=14>                            V  |
 +
9.              <Ref=60>            +--- ACK ------------------+  |
 +
                                          <RVLId=15><SVLId=44>  |
 +
                                          <Ref=160>              V
 +
          ... perform normal ACCEPT processing ...       <-----+
  
 +
              Figure 16.  Processing NOTIFY Messages
  
       3.1.3.        Reserving Resources
+
       notify may have prevented the ST agents from meeting the
 +
      original guarantees.)
  
        The intent of ST is to provide a guaranteed level of service by
+
3.6.       Options
        reserving internet resources for a stream during a setup phase
 
        rather than on a per packet basis. The relevant resources are
 
        not only the forwarding information maintained by the ST
 
        agents, but also packet switch processor bandwidth and buffer
 
        space, and network bandwidth and multicast group identifiers.
 
        Reservation of these resources can help to increase the
 
        reliability and decrease the delay and delay variance with
 
        which data packets are delivered.  The FlowSpec contains all
 
        the information needed by the ST agent to allocate the
 
        necessary resources.  When and how these resources are
 
        allocated depends on the details of the networks involved, and
 
        is not specified here.
 
  
        If an ST agent must send data across a network to a single
+
  Several options are defined in the CONNECT message.  The special
        next-hop ST agent, then only the point-to-point bandwidth needs
+
  processing required to support each will be described in the
        to be reservedIf the agent must send data to multiple next-
+
  following sections.  The options are independent, i.e., can be set
        hop agents across one network and network layer multicasting is
+
  to one (1, TRUE) or zero (0, FALSE) in any combinationHowever,
        not available, then bandwidth must be reserved for all of them.
+
  the effect and implementation of the options is NOT necessarily
        This will allow the ST agent to
+
  independent, and not all combinations are supported.
  
 +
  3.6.1.        HID Field Option
  
 +
      The sender of a CONNECT message may or not specify an HID in
 +
      the HID field.  If the HID Field option of the CONNECT message
 +
      is not set (the H bit is 0), then the HID field does not
 +
      contain relevant information and should be ignored.
  
CIP Working Group                                           
+
      If this option is set (the H bit is 1), then the HID field
 +
      contains a relevant value.  If this option is set and the HID
 +
      field of the CONNECT contains a non-zero value, that value
 +
      represents a proposed HID that initiates the HID negotiation.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      If the HID Field option is set but the HID field of the CONNECT
 +
      message contains a zero, this means that the sender of that
 +
      CONNECT message has chosen to defer selection of the HID to the
 +
      next-hop agent (the receiver of a CONNECT message).  This
 +
      choice can allow a more efficient mechanism for selecting HIDs
 +
      and possibly a more efficient mechanism for forwarding data
 +
      packets in the case when the previous-hop does not need to
 +
      select the HID;  see also Section 4.2.3.5 (page 105).
  
 +
      Upon receipt of a CONNECT message with the HID Field option set
 +
      and the HID field set to zero, a next-hop agent selects the HID
 +
      for the hop, enters it into its appropriate data structure, and
 +
      returns it in the HID field of the HID-APPROVE message.  The
 +
      previous-hop takes the HID from the HID-APPROVE message and
 +
      enters it into its appropriate data structure.
  
        use replication to send a copy of the data packets to each
+
  3.6.2.        PTP Option
        next-hop agent.
 
  
        If multicast is supported, its use will decrease the effort
+
      The PTP option (Point-to-Point) is used to indicate that the
        that the ST agent must expend when forwarding packets and also
+
      stream will never have more than a single targetIt
        reduces the bandwidth required since one copy can be received
+
      consequently implies that the stream will never need to support
        by all next-hop agents.  However, the setup phase is more
+
      any form of multicasting.  Use of the PTP option may thus allow
        complicatedA network multicast address must be allocated
+
      efficiencies in the way the stream is built or is
        that contains all those next-hop agents, the sender must have
 
        access to that address, the next-hop agents must be informed of
 
        the address so they can join the multicast group identified by
 
        it (see Section 4.2.2.7 (page 86)), and a common HID must be
 
        negotiated.
 
  
        The network should consider the bandwidth and multicast
+
      managedSpecifically, the ST agents do not need to request
        requirements to determine the amount of packet switch
+
      that the intervening networks allocate multicast groups to
        processing bandwidth and buffer space to reserve for the
+
      support this stream.
        streamIn addition, the membership of a stream in a Group may
 
        affect the resources that have to be allocated;  see Section
 
        3.7.3 (page 56).
 
  
        Few networks in the Internet currently offer resource
+
      The PTP option can only be set to one (1) by the origin, and
        reservation, and none that we know of offer reservation of all
+
      must be the same for the entire stream (i.e., propagated by ST
        the resources specified here.  Only the Terrestrial Wideband
+
      agents).  The details of what this option does are
        Network (TWBNet) [7] and the Atlantic Satellite Network
+
      implementation specific, and do not affect the protocol very
        (SATNET) [9] offer(ed) bandwidth reservationMulticasting is
+
      much.
        more widely supported.  No network provides for the reservation
 
        of packet switch processing bandwidth or buffer space.  We hope
 
        that future networks will be designed to better support
 
        protocols like ST.
 
  
        Effects similar to reservation of the necessary resources may
+
      If the application attempts to add a new target to an existing
        be obtained even when the network cannot provide direct support
+
      stream that was created with the PTP option set to one (1), the
        for the reservationCertainly if total reservations are a
+
      application should be informed of the error with an ERROR-IN-
        small fraction of the overall resources, such as packet switch
+
      REQUEST message with the appropriate reason codeIf a CONNECT
        processing bandwidth, buffer space, or network bandwidth, then
+
      is received whose TargetList contains more than a single entry,
        the desired performance can be honored if the degree of
+
      an ERROR-IN-REQUEST message with the appropriate reason code
        confidence is consistent with the requirements as stated in the
+
      (PTPError) should be returned to the previous-hop agent (note
        FlowSpec.  Other solutions can be designed for specific
+
      that such a CONNECT should never be received if the origin both
        networks.
+
      implements the PTP option and is functioning properly).
  
 +
      As implied in the last paragraph, a subsetted implementation
 +
      might choose not to implement the PTP option.
  
      3.1.4.        Sending CONNECT Messages
+
  3.6.3.        FDx Option
  
        A VLId and a proposed HID must be selected for each next-hop
+
      The FDx option is used to indicate that a second stream in the
        agentThe control packets for the next-hop must carry the
+
      reverse direction, from the target to the origin, should
        VLId in the SVLId field.  The data packets transmitted in the
+
      automatically be created.  This option is most likely to be
        stream to the next-hop must carry the HID in the ST Header.
+
      used when the TargetList has only a single entryIf used when
 +
      the TargetList has multiple entries, the resulting streams
 +
      would allow bi-directional communication between the origin and
 +
      the various targets, but not among the targets.  The FDx option
 +
      can only be invoked by the origin, and must be propagated by
 +
      intermediate agents.
  
        The ST agent sends a CONNECT message to each of the ST agents
+
      This option is specified by inclusion of both an RFlowSpec and
        identified by the routing function.  Each CONNECT message
+
      an RHID parameter in the CONNECT message (possibly with an
        contains the VLId, the proposed HID (the HID Field option bit
+
      optional RGroup parameter).
  
 +
      Any ST agent that receives a CONNECT message with both an
 +
      RFlowSpec and an RHID parameter will create database entries
 +
      for streams in both directions and will allocate resources in
 +
      both directions for them.  By this we mean that an ST agent
 +
      will reserve resources to the next-hop agent for the normal
 +
      stream and resources back to the previous-hop agent for the
 +
      reverse stream.  This is necessary since it is expected that
 +
      network reservation interfaces will require the destination
 +
      address(es) in order to make reservations, and because all ST
 +
      agents must use the same reservation model.
  
CIP Working Group                                           
+
      The target agent will select a Name for the reverse stream and
 +
      return it (in the RName parameter) and the resulting FlowSpec
 +
      (in the RFlowSpec parameter) of the ACCEPT message.  Each agent
 +
      that processes the ACCEPT will update its partial stream
 +
      database entry for the reverse stream with the Name contained
 +
      in the RName parameter.  We assume that the next higher
 +
      protocol layer will use the same SAP for both streams.
  
RFC 1190                Internet Stream Protocol            October 1990
+
  3.6.4.        NoRecovery Option
  
 +
      The NoRecovery option is used to indicate that ST agents should
 +
      not attempt recovery in case of network or component failure.
 +
      If a failure occurs, the origin will be notified via a REFUSE
 +
      message and the target(s) via a DISCONNECT, with an appropriate
 +
      reason code of "failure" (i.e., one of DropFailAgt,
 +
      DropFailHst, DropFailIfc, DropFailNet, IntfcFailure,
 +
      NetworkFailure, STAgentFailure, FailureRecovery).  They can
 +
      then decide whether to wait for the failed component to be
 +
      fixed, or drop the target via DISCONNECT/REFUSE messages.  The
 +
      NoRecovery option can only be set to one (1) by the origin, and
 +
      must be the same for the entire stream.
  
        must be set, see Section 3.6.1 (page 44)), an updated FlowSpec,
+
  3.6.5.       RevChrg Option
        and a TargetList.  In general, the HID, FlowSpec, and
 
        TargetList will depend on both the next-hop and the intervening
 
        network.  Each TargetList is a subset of the received (or
 
        original) TargetList, identifying the targets that are to be
 
        reached through the next-hop to which the CONNECT message is
 
        being sent.  Note that a CONNECT message to a single next-hop
 
        might have to be fragmented into multiple CONNECTs if the
 
        single CONNECT is too large for the intervening network's MTU;
 
        fragmentation is performed by further dividing the TargetList.
 
  
        If multiple next-hops are to be reached through a network that
+
      The RevChrg option bit in the FlowSpec is set to one (1) by the
        supports network level multicast, a different CONNECT message
+
      origin to request that the target(s) pay any charges associated
        must nevertheless be sent to each next-hop since each will have
+
      with the stream (to the target(s));  see Section 4.2.2.3 (page
        a different TargetList;  see Section 4.2.3.5 (page 105).
+
      83). If the target is not willing to accept charges, the bit
        However, since an identical copy of each ensuing data packet
+
      should be set to zero (0) by the target before returning the
        will reach each member of the multicast group, all the CONNECT
+
      FlowSpec to the origin in an ACCEPT message.
        messages must propose the same HID.  See Section 3.7.4 (page
 
        58) for a detailed discussion on HID selection.
 
  
        In the example of Figure 2, the routing function might return
+
      If the FDx option is also specified, the target pays charges
        that B is reachable via Agent 1 and C and D are reachable via
+
      for both streams.
        Agent 2.  Thus A would create two CONNECT messages, one each
 
        for Agents 1 and 2, as illustrated in Figure 5.  Assuming that
 
        the proposed HIDs are available in the receiving agents, they
 
        would each send a responding HID-APPROVE back to Agent A.
 
  
 +
  3.6.6.        Source Route Option
  
        Application Agent A                    Agent 1    Agent 2
+
      The Source Route Option may be used both for diagnostic
 +
      purposes, and, in those hopefully infrequent cases where the
 +
      standard routing mechanisms do not produce paths that satisfy
 +
      some policy constraint, to allow the origin to prespecify the
 +
      ST agents along the path to the target(s). The idea is that
 +
      the origin can explicitly specify the path to a target, either
 +
      strictly hop-by-hop or more loosely by specification of one or
 +
      more agents through which the path must pass.
  
    1.1. (open B,C,D)
+
       The option is specified by including source routing information
              V
+
      in the Target structure. A target may contain zero or more
    1.2.       +-> (routing to B,C,D)
+
      SrcRoute options; when multiple options are present, they are
                        V
+
      processed in the order in which they occurThe parameter code
    1.3.                +->(reserve resources from A to Agent 1)
+
      indicates whether the portion of the path contained in the
                        | V
+
      parameter is of the strict or loose variety.
    1.4.                | +-> CONNECT B --------->>
 
                        |      <RVLId=0><SVLId=4>
 
                        |      <Ref=10><HID=1200>
 
                        V
 
    1.5.                +->(reserve resources from A to Agent 2)
 
                            V
 
    1.6.                    +-> CONNECT C,D ------------------>>
 
                                <RVLId=0><SVLId=5>
 
                                <Ref=15><HID=2400>
 
 
 
              Figure 5.  Origin Sending CONNECT Message
 
  
 +
      Since portions of a path may pass through portions of an
 +
      internet that does not support ST agents, there are also forms
 +
      of the SrcRoute option that are converted into the
  
 +
Application  Agent A        Agent 2        Agent 3              Agent B
  
 +
== (open B<SR=2,3>) ==
 +
== V                                              (proc B listening) ==
 +
== (source routed to 2) ==
 +
  V
 +
== (check resources from A to Agent 2: already allocated, ==
 +
  V  reuse control link & HID, no additional resources needed)
 +
== +-> CONNECT B<SR=2,3>->-+-+ ==
 +
      <RVLId=23><SVLId=5> | |
 +
== <Ref=50>            V | ==
 +
== +<- ACK ----------------+ | ==
 +
      <RVLId=5><SVLId=23>  |
 +
      <Ref=50>              V
 +
== (source routed to 3) ==
 +
                          V
 +
== (reserve resources 2 to 3) ==
 +
                      V
 +
10.                      +-> CONNECT B<SR=3> ---->+
 +
                          <RVLId=0><SVLId=24>  |
 +
                          <Ref=280><HID=4801>  V
 +
11.                      +<- HID-APPROVE <--------+
 +
                          <RVLId=24><SVLId=33> |
 +
                          <Ref=280><HID=4801>  |
 +
                                                V
 +
                                        (routing to B)
 +
                                            V
 +
                              (reserve resources from 3 to B)
 +
                                          V
 +
12.                                          +-> CONNECT B ---------->+
 +
                                              <RVLId=0><SVLId=32>  |
 +
                                              <Ref=330><HID=6000>  V
 +
13.                                          +<- HID-APPROVE <--------+
 +
                                              <RVLId=32><SVLId=45> |
 +
                                              <Ref=330><HID=6000>  V
 +
14.                                                    (proc B accepts)
 +
                                                                  V
 +
            ... perform normal ACCEPT processing ...        <-----+
  
 +
                Figure 17.  Source Routing Option
  
 +
      corresponding IP Source Routing options by the ST agent that
 +
      performs the encapsulation.
  
 +
      The SrcRoute option is usually selected by the origin, but may
 +
      be used by intermediate agents if specified as a result of the
 +
      routing function.
  
CIP Working Group                                           
+
      For example, in the topology of Figure 2, if A wants to add B
 +
      back into the stream, its routing function might decide that
 +
      the best path is via Agent 3.  Since the data is already being
 +
      multicast across the network connected to C, D, and E, the
 +
      route via Agent 3 might cost less than having A replicate the
 +
      data packets and send them across A's network a second time.
  
RFC 1190                Internet Stream Protocol            October 1990
+
3.7.      Ancillary Functions
  
 +
  There are several functions and procedures that are required by
 +
  the ST Protocol.  They are described in subsequent sections.
  
      3.1.5.        CONNECT Processing by an Intermediate Agent
+
  3.7.1.        Failure Detection
  
        An ST agent receiving a CONNECT message should, assuming no
+
      The ST failure detection mechanism is based on two assumptions:
        errors, quickly select a VLId and respond to the previous-hop
 
        with either an ACK, a HID-REJECT, or a HID-APPROVE message, as
 
        is appropriate.  This message must identify the CONNECT to
 
        which it corresponds by including the CONNECT's Reference
 
        number in its Reference field.  Note that the VLId that this
 
        agent selects is placed in the SVLId of the response, and the
 
        previous-hop's VLId (which is contained in the SVLId of the
 
        CONNECT) is copied into the RVLId of the response.  If the
 
        agent is not a target, it must then invoke the routing
 
        function, reserve resources, and send a CONNECT message(s) to
 
        its next-hop(s), as described in Sections 3.1.2-4 (pages 19-
 
        20).
 
  
 +
      1  If a neighbor of an ST agent is up, and has been up
 +
          without a disruption, and has not notified the ST agent
 +
          of a problem with streams that pass through both, then
 +
          the ST agent can assume that there has not been any
 +
          problem with those streams.
  
       Agent A                   Agent 1                      Agent B
+
       A network through which an ST agent has routed a stream
 +
          will notify the ST agent if there is a problem that
 +
          affects the stream data packets but does not affect the
 +
          control packets.
  
    [1.4] >>-> CONNECT B -------->+--+
+
      The purpose of the robustness protocol defined here is for ST
              <RVLId=0><SVLId=4> |  V
+
      agents to determine that the streams through a neighbor have
2.1.          <Ref=10><HID=1200> | (routing to B)
+
      been broken by the failure of the neighbor or the intervening
                                  |  V
+
      networkThis protocol should detect the overwhelming majority
2.2.                              V +->(reserve resources from 1 to B)
+
      of failures that can occurOnce a failure is detected,
2.3.       +<- HID-APPROVE <------+    V
+
       recovery procedures are initiated.
2.4.          <RVLId=4><SVLId=14>      +-> CONNECT B ---------->>
 
              <Ref=10><HID=1200>          <RVLId=0><SVLId=15>
 
                                            <Ref=110><HID=3600>
 
  
      Agent A                  Agent 2                      Agent C
+
      3.7.1.1.        Network Failures
  
    [1.6] >>-> CONNECT C,D ------>+-+
+
        In this memo, a network is defined to be the protocol
              <RVLId=0><SVLId=5> | V
+
        layer(s) below STThis function can be implemented in a
2.5.          <Ref=15><HID=2400> | (routing to C,D)
+
        hardware module separate from the ST agent, or as software
                                  | V
+
        modules within the ST agent itself, or as a combination of
2.6.                              V +-->(reserve resources from 2 to C)
 
2.7.      +<- HID-APPROVE <------+ |  V
 
2.8.          <RVLId=5><SVLId=23> |  +-> CONNECT C ---------->>
 
              <Ref=15><HID=2400>  |      <RVLId=0><SVLId=25>
 
                                    |      <Ref=210><HID=4800>
 
                                    |
 
                                    |                        Agent D
 
                                    V
 
2.9.                                +->(reserve resources from 2 to D)
 
                                        V
 
2.10.                                  +-> CONNECT D ---------->>
 
                                            <RVLId=0><SVLId=26>
 
                                            <Ref=215><HID=4800>
 
  
         Figure 6CONNECT Processing by an Intermediate Agent
+
         bothThis specification and the robustness protocol do not
 +
        differentiate between these alternatives.
  
 +
        An ST agent can detect network failures by two mechanisms;
 +
        the network can report a failure, or the ST agent can
 +
        discover a failure by itself.  They differ in the amount of
 +
        information that ST agent has available to it in order to
 +
        make a recovery decision.  For example, a network may be
 +
        able to report that reserved bandwidth has been lost and the
 +
        reason for the loss and may also report that connectivity to
 +
        the neighboring ST agent remains intact.  In this case, the
 +
        ST agent may request the network to allocate bandwidth anew.
 +
        On the other hand, an ST agent may discover that
 +
        communication with a neighboring ST agent has ceased because
 +
        it has not received any traffic from that neighbor in some
 +
        time period.  If an ST agent detects a failure, it may not
 +
        be able to determine if the failure was in the network while
 +
        the neighbor remains available, or the neighbor has failed
 +
        while the network remains intact.
  
 +
      3.7.1.2.        Detecting ST Stream Failures
  
 +
        Each ST agent periodically sends each neighbor with which it
 +
        shares a stream a HELLO message.  A HELLO message is ACKed
 +
        if the Reference field is non-zero.  This message exchange
 +
        is between ST agents, not entities representing streams or
 +
        applications (there is no Name field in a HELLO message).
 +
        That is, an ST agent need only send a single HELLO message
 +
        to a neighbor regardless of the number of streams that flow
 +
        between them.  All ST agents (host as well as intermediate)
 +
        must participate in this exchange.  However, only agents
 +
        that share active streams need to participate in this
 +
        exchange.
  
CIP Working Group                                           
+
        To facilitate processing of HELLO messages, an
 +
        implementation may either create a separate Virtual Link
 +
        Identifier for each neighbor having an active stream, or may
 +
        use the reserved identifier of one (1) for the SVLId field
 +
        in all its HELLO messages.
  
RFC 1190                Internet Stream Protocol            October 1990
+
        An implementation that wishes to send its HELLO messages via
 +
        a data path instead of the control path may setup a separate
 +
        stream to its neighbor agent for that purpose.  The HELLO
 +
        message would contain a HID of zero, indicating a control
 +
        message, but would be identified to the next lower protocol
 +
        layer as being part of the separate stream.
  
 +
        As well as identifying the sender, the HELLO message has two
 +
        fields;  a HelloTimer field that is in units of milliseconds
 +
        modulo the maximum for the field size, and a
  
         The resources listed as Desired in a received FlowSpec may not
+
         Restarted bit specifying that the ST agent has been
        correspond to those actually reserved in either the ST agent
+
         restarted recentlyThe HelloTimer must appear to be
         itself or in the network(s) used to reach the next-hop
+
         incremented every millisecond whether a HELLO message is
        agent(s)As long as the reserved resources are sufficient to
+
         sent or not, but it is allowable for an ST agent to create a
         meet the specified Limits, the copy of the FlowSpec sent to a
+
         new HelloTimer only when it sends a HELLO messageThe
         next-hop must have the Desired resources updated to reflect the
+
         HelloTimer wraps around to zero after reaching the maximum
         resources that were actually obtainedFor example, the
+
         valueWhenever an ST agent suffers a catastrophic event
         Desired bandwidth might be reduced because the network to the
+
         that may result in it losing ST state information, it must
         next-hop could not provide all of the desired bandwidthAlso,
+
         reset its HelloTimer to zero and must set the Restarted bit
         the delay and delay variance are appropriately increased, and
+
         for the following HelloTimerHoldDown seconds.
         the link MTU may require that the DesPDUBytes field be reduced.
 
         (The minimum requirements that the origin had entered into the
 
        FlowSpec Limits fields cannot be altered by the intermediate or
 
        target agents.)
 
  
 +
        An ST agent must send HELLO messages to its neighbor with a
 +
        period shorter than the smallest RecoveryTimeout parameter
 +
        of the FlowSpecs of all the active streams that pass between
 +
        the two agents, regardless of direction.  This period must
 +
        be smaller by a factor, called HelloLossFactor, which is at
 +
        least as large as the greatest number of consecutive HELLO
 +
        messages that could credibly be lost while the communication
 +
        between the two ST agents is still viable.
  
      3.1.6.        Setup at the Targets
+
        An ST agent may send simultaneous HELLO messages to all its
 +
        neighbors at the rate necessary to support the smallest
 +
        RecoveryTimeout of any active stream. Alternately, it may
 +
        send HELLO messages to different neighbors independently at
 +
        different rates corresponding to RecoveryTimeouts of
 +
        individual streams.
  
         An ST agent that is the target of a CONNECT, whether from an
+
         The agent that receives a HELLO message expects to receive
         intermediate ST agent, or directly from the origin host ST
+
        at least one new HELLO message from a neighbor during the
         agent, must respond first (assuming no errors) with either a
+
        RecoveryTimeout of every active stream through that
         HID-REJECT or HID-APPROVEAfter inquiring from the specified
+
         neighbor.  It can detect duplicate or delayed HELLO messages
         application process whether or not it is willing to accept the
+
        by saving the HelloTimer field of the most recent valid
         connection, the agent must also respond with either an ACCEPT
+
         HELLO message from that neighbor and comparing it with the
         or a REFUSE.
+
         HelloTimer field of incoming HELLO messagesIt will only
 +
        accept an incoming HELLO message from that neighbor if it
 +
        has a HelloTimer field that is greater than the most recent
 +
         valid HELLO message by the time elapsed since that message
 +
        was received plus twice the maximum likely delay variance
 +
        from that neighbor.  If the ST agent does not receive a
 +
        valid HELLO message within the RecoveryTimeout of a stream,
 +
        it must assume that the neighboring ST agent or the
 +
         communication link between the two has failed and it must
 +
         initiate stream recovery activity.
  
         In particular, the application must be presented with
+
         Furthermore, if an ST agent receives a HELLO message that
         parameters from the CONNECT, such as the Name, FlowSpec,
+
         contains the Restarted bit set, it must assume that the
         Options, and Group, to be used as a basis for its decision.
+
         sending ST agent has lost its ST stateIf it shares
        The application is identified by a combination of the NextPcol
+
         streams with that neighbor, it must initiate stream recovery
        field and the SAP field in the (usually) single remaining
+
         activityIf it does not share streams with that neighbor,
        Target of the TargetListThe contents of the SAP field may
+
         it should not attempt to create one until that
         specify the "port" or other local identifier for use by the
 
         protocol layer above the host ST layerSubsequently received
 
         data packets will carry a short hand identifier (the HID) that
 
        can be mapped into this information and be used for their
 
        delivery.
 
  
         The responses to the CONNECT message are sent to the previous-
+
         bit is no longer set.  If an ST agent receives a CONNECT
         hop from which the CONNECT was received.  An ACCEPT contains
+
        message from a neighbor whose Restarted bit is still set, it
         the Name of the stream and the updated FlowSpecNote that the
+
         must respond with ERROR-IN-REQUEST with the appropriate
         application might have reduced the desired level of service in
+
         reason code (RemoteRestart)If it receives a CONNECT
        the received FlowSpec before accepting it.  The target must not
+
         message while its own Restarted bit is set, it must respond
         send the ACCEPT until HID negotiation has been successfully
+
         with ERROR-IN-REQUEST with the appropriate reason code
         completed.
+
         (RestartLocal).
  
        Since the ACCEPT or REFUSE message must be acknowledged by the
+
      3.7.1.3.        Subset
        previous-hop, it is assigned a new Reference number that will
 
        be returned in the ACK. The CONNECT to which the ACCEPT or
 
        REFUSE is a reply is identified by placing the CONNECT's
 
        Reference number in the LnkReference field of the ACCEPT or
 
        REFUSE.
 
  
 +
        This failure detection mechanism subsets by reducing the
 +
        complexity of the timing and decisions.  A subsetted ST
 +
        agent sends HELLO messages to all its ST neighbors
 +
        regardless of whether there is an active ST stream between
 +
        them or not.  The RecoveryTimeout parameter of the FlowSpec
 +
        is ignored and is assumed to be the DefaultRecoveryTimeout.
 +
        Note that this implies that a REFUSE should be sent for all
 +
        CONNECT or CHANGE messages whose RecoveryTimeout is less
 +
        than DefaultRecoveryTimeout.  An ST agent will accept an
 +
        incoming HELLO message if it has a HelloTimer field that is
 +
        greater than the most recent valid HELLO message by
 +
        DefaultHelloFactor times the time elapsed since that message
 +
        was received.
  
CIP Working Group                                           
+
  3.7.2.        Failure Recovery
  
RFC 1190                Internet Stream Protocol            October 1990
+
      Streams can fail from various causes;  an ST agent can break, a
 +
      network can break, or an ST agent can intentionally break a
 +
      stream in order to give the stream's resources to a higher
 +
      precedence stream.  We can envision several approaches to
 +
      recovery of broken streams, and we consider the one described
 +
      here the simplest and therefore the most likely to be
 +
      implemented and work.
  
 +
      If an intermediate agent fails or a network or part of a
 +
      network fails, the previous-hop agent and the various next-hop
 +
      agents will discover the fact by the failure detection
 +
      mechanism described in Section 3.7.1 (page 48).  An ST agent
 +
      that intentionally breaks a stream obviously knows of the
 +
      event.
  
          Agent 1                    Agent B       Application B
+
       The recovery of an ST stream is a relatively complex and time
3.1.                                            (proc B listening)
+
      consuming effort because it is designed in a general manner to
        [2.4] >>-> CONNECT B ---------->+------------------+
+
      operate across a large number of networks with diverse
                    <RVLId=0><SVLId=15> |                  |
+
      characteristicsTherefore, it may require information to be
3.2.              <Ref=110><HID=3600> V          (proc B accepts)
+
      distributed widely, and may require relatively long timersOn
3.3.          +<- HID-APPROVE <--------+                  |
+
      the other hand, since a network is a homogeneous system,
                    <RVLId=15><SVLId=44>                    |
+
      failure recovery in the network may be a relatively faster and
                    <Ref=110><HID=3600>                    V
+
      simpler operation. Therefore an ST agent that detects a
  3.4.                      (wait until HID negotiated) <---+
+
       failure should attempt to fix the network failure before
                                        V
 
3.5.       <<--+<- ACCEPT B <-----------+
 
                    <RVLId=15><SVLId=44>
 
                    <Ref=410><LnkRef=110>
 
  
          Agent 2                    Agent C       Application C
+
       attempting recovery of the ST streamIf the stream that
3.6.                                             (proc C listening)
+
      existed between two ST agents before the failure cannot be
        [2.8] >>-> CONNECT C ---------->+------------------+
+
      reconstructed by network recovery mechanisms alone, then the ST
                    <RVLId=0><SVLId=25> |                  |
+
      stream recovery mechanism must be invoked.
3.7.              <Ref=210><HID=4800>  V          (proc C accepts)
 
3.8.          +<- HID-APPROVE <--------+                  |
 
                    <RVLId=25><SVLId=54>                    |
 
                    <Ref=210><HID=4800>                    V
 
3.9.                      (wait until HID negotiated) <---+
 
                                        V
 
3.10.      <<--+<- ACCEPT C <-----------+
 
                    <RVLId=25><SVLId=54>
 
                    <Ref=510><LnkRef=210>
 
  
          Agent 2                    Agent D       Application D
+
       If stream recovery is necessary, the different ST agents may
3.11.                                            (proc D listening)
+
      need to perform different functions, depending on their
        [2.10] >>-> CONNECT D ---------->+------------------+
+
      relation to the failure.
                    <RVLId=0><SVLId=26>  |                  |
 
3.12.              <Ref=215><HID=4800>  V          (proc D accepts)
 
3.13.          +<- HID-APPROVE <--------+                  |
 
                    <RVLId=26><SVLId=64>                    |
 
                    <Ref=215><HID=4800>                    V
 
3.14.                      (wait until HID negotiated) <---+
 
                                        V
 
3.15.      <<--+<- ACCEPT D <-----------+
 
                    <RVLId=26><SVLId=64>
 
                    <Ref=610><LnkRef=215>
 
  
              Figure 7CONNECT Processing by the Target
+
      An intermediate agent that breaks the stream intentionally
 +
      sends DISCONNECT messages with the appropriate reason code
 +
      (StreamPreempted) toward the affected targetsIf the
 +
      NoRecovery option is selected, it sends a REFUSE message with
 +
      the appropriate reason code(StreamPreempted) toward the origin.
 +
      If the NoRecovery option is not selected, then this agent
 +
      attempts recovery of the stream, as described below.
  
 +
      A host agent that is a target of the broken stream or is itself
 +
      the next-hop of the failed component should release resources
 +
      that are allocated to the stream, but should maintain the
 +
      internal state information describing the stream.  It should
 +
      inform any next higher protocol of the failure.  It is
 +
      appropriate for that protocol to expect that the stream will be
 +
      fixed shortly by some alternate path and so maintain, for some
 +
      time period, whatever information in the ST layer, the next
 +
      higher layer, and the application is necessary to reactivate
 +
      quickly entries for the stream as the alternate path develops.
 +
      The agent should use a timeout to delete all the stream
 +
      information in case the stream cannot be fixed in a reasonable
 +
      time.
  
       3.1.7.       ACCEPT Processing by an Intermediate Agent
+
       An intermediate agent that is a next-hop of a failure that was
 +
      not due to a preemption should first verify that there was a
 +
      failure. It can do this using STATUS messages to query its
 +
      upstream neighbor. If it cannot communicate with that
 +
      neighbor, then it should first send a REFUSE message with the
 +
      appropriate reason code of "failure" to the neighbor to speed
 +
      up the failure recovery in case the hop is unidirectional,
 +
      i.e., the neighbor can hear the agent but the agent cannot hear
 +
      the neighbor.  The ST agent detecting the failure must then
 +
      send DISCONNECT messages with the same reason code toward the
 +
      targets.  The intermediate agents process this DISCONNECT
 +
      message just like the DISCONNECT that tears down the stream.
 +
      However, a target ST agent that receives a DISCONNECT message
 +
      with the appropriate reason code (StreamPreempted, or
 +
      "failure") will maintain the stream state and notify the next
 +
      higher protocol of the failure.  In effect, these DISCONNECT
 +
      messages tear down the stream from the point of the failure to
 +
      the targets, but inform the targets that the stream may be
 +
      fixed shortly.
  
        When an intermediate ST agent receives an ACCEPT, it first
+
      An ST agent that is the previous-hop before the failed
        verifies that the message is a response to an earlier CONNECT.
+
      component first verifies that there was a failure by querying
        If not, it responds to the next-hop ST agent with an ERROR-IN-
+
      the downstream neighbor using STATUS messages.  If the neighbor
        REPLY (LnkRefUnknown) messageOtherwise, it responds to the
+
      has lost its state but is available, then the ST agent may
        next-hop ST agent with an ACK, and propagates
+
      reconstruct the stream if the NoRecovery option is not
 +
      selected, as described below.  If it cannot communicate with
 +
      the next-hop, then the agent detecting the failure releases any
 +
      resources that are dedicated exclusively to sending data on the
 +
      broken branch and sends a DISCONNECT message with the
 +
      appropriate reason code ("failure") toward the affected
 +
      targetsIt does so to speed up failure recovery in case the
 +
      communication may be unidirectional and this message might be
 +
      delivered successfully.
  
 +
      If the NoRecovery option is selected, then the ST agent that
 +
      detects the failure sends a REFUSE message with the appropriate
 +
      reason code ("failure") to the previous-hop.  If it is breaking
 +
      the stream intentionally, it sends a REFUSE message with the
 +
      appropriate reason code (StreamPreempted) to the previous-hop.
 +
      The TargetList in these messages contains all the targets that
 +
      were reached through the broken branch.  Multiple REFUSE
 +
      messages may be required if the PDU is too long for the MTU of
 +
      the intervening network.  The REFUSE message is propagated all
 +
      the way to the origin, which can attempt recovery of the stream
 +
      by sending a new CONNECT to the affected targets.  The new
 +
      CONNECT will be treated by intermediate ST agents as an
 +
      addition of new targets into the established stream.
  
CIP Working Group                                           
+
      If the NoRecovery option is not selected, the ST agent that
 +
      breaks the stream intentionally or is the previous-hop before
 +
      the failed component can attempt recovery of the stream.  It
 +
      does so by issuing a new CONNECT message to the affected
 +
      targets.  If the ST agent cannot find new routes to some
 +
      targets, or if the only route to some targets is through the
 +
      previous-hop, then it sends one or more REFUSE messages to the
 +
      previous-hop with the appropriate reason code ("failure" or
 +
      StreamPreempted) specifying the affected targets in the
 +
      TargetList.  The previous-hop can then attempt recovery of the
 +
      stream by issuing a CONNECT to those targets.  If it cannot
 +
      find an appropriate route, it will propagate the REFUSE message
 +
      toward the origin.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      Regardless of which agent attempts recovery of a damaged
 +
      stream, it will issue one or more CONNECT messages to the
 +
      affected targets.  These CONNECT messages are treated by
 +
      intermediate ST agents as additions of new targets into the
 +
      established stream.  The FlowSpecs of the new CONNECT messages
 +
      should be the same as the ones contained in the most recent
 +
      CONNECT or CHANGE messages that the ST agent had sent toward
 +
      the affected targets when the stream was operational.
  
 +
      The reconstruction of a broken stream may not proceed smoothly.
 +
      Since there may be some delay while the information concerning
 +
      the failure is propagated throughout an internet, routing
 +
      errors may occur for some time after a failure.  As a result,
 +
      the ST agent attempting the recovery may receive REFUSE or
 +
      ERROR-IN-REQUEST messages for the new CONNECTs that are caused
 +
      by internet routing errors.  The ST agent attempting the
 +
      recovery should be prepared to resend CONNECTs before it
 +
      succeeds in reconstructing the stream.  If the failure
 +
      partitions the internet and a new set of routes cannot be found
 +
      to the targets, the REFUSE messages will eventually be
 +
      propagated to the origin, which can then inform the application
 +
      so it can decide whether to terminate or to continue to attempt
 +
      recovery of the stream.
  
        the ACCEPT message to the previous-hop along the same path
+
      The new CONNECT may at some point reach an ST agent downstream
        traced by the CONNECT but in the reverse direction toward the
+
      of the failure before the DISCONNECT does.  In this case, the
        originThe ACCEPT should not be propagated until all HID
+
      agent that receives the CONNECT is not yet aware that the
        negotiations with the next-hop agent(s) have been successfully
+
      stream has suffered a failure, and will interpret the new
        completed.
+
      CONNECT as resulting from a routing failure.  It will respond
 +
      with an ERROR-IN-REQUEST message with the appropriate reason
 +
      code (StreamExists).  Since the timeout that the ST agents
 +
      immediately preceding the failure and immediately following the
 +
      failure are approximately the same, it is very likely that the
 +
      remnants of the broken stream will soon be torn down by a
 +
      DISCONNECT message with the appropriate reason code
 +
      ("failure").  Therefore, the ST agent that receives the ERROR-
 +
      IN-REQUEST message with reason code (StreamExists) should
 +
      retransmit the CONNECT message after the ToConnect timeout
 +
      expires.  If this fails again, the request will be retried for
 +
      NConnect timesOnly if it still fails will the ST agent send
 +
      a REFUSE message with the appropriate reason code (RouteLoop)
 +
      to its previous-hop.  This message will be propagated back to
 +
      the ST agent that is attempting recovery of the damaged stream.
 +
      That ST agent can issue a new CONNECT message if it so chooses.
 +
      The REFUSE is matched to a CONNECT message created by a
 +
      recovery operation through the LnkReference field in the
 +
      CONNECT.
  
        The FlowSpec is included in the ACCEPT message so that the
+
      ST agents that have propagated a CONNECT message and have
        origin and intermediate ST agents can gain access to the
+
      received a REFUSE message should maintain this information for
        information that was accumulated as the CONNECT traversed the
+
      some period of time.  If an agent receives a second CONNECT
        internetNote that the resources, as specified in the
+
      message for a target that recently resulted in a REFUSE, that
        FlowSpec in the ACCEPT message, may differ from the resources
+
      agent may respond with a REFUSE immediately rather than
        that were reserved by the agent when the CONNECT was
+
      attempting to propagate the CONNECT.  This has the effect of
 +
      pruning the tree that is formed by the propagation of CONNECT
 +
      messages to a target that is not reachable by the routes that
 +
      are selected first.  The tree will pass through any given ST
 +
      agent only once, and the stream setup phase will be completed
 +
      faster.
  
 +
      The time period for which the failure information is maintained
 +
      must be consistent with the expected lifetime of that
 +
      information.  Failures due to lack of reachability will remain
 +
      relevant for time periods large enough to allow for network
 +
      reconfigurations or repairs.  Failures due to routing loops
 +
      will be valid only until the relevant routing information has
 +
      propagated, which can be a short time period.  Lack of
 +
      bandwidth resulting from over-allocation will remain valid
 +
      until streams are terminated, which is an unpredictable time,
 +
      so the time that such information is maintained should also be
 +
      short.
  
       Agent A                    Agent 1                    Agent B
+
       If a CONNECT message reaches a target, the target should as
 +
      efficiently as possible use the state that it has saved from
 +
      before the stream failed during recovery of the stream.  It
 +
      will then issue an ACCEPT message toward the origin.  The
 +
      ACCEPT message will be intercepted by the ST agent that is
 +
      attempting recovery of the damaged stream, if not the origin.
 +
      If the FlowSpec contained in the ACCEPT specifies the same
 +
      selection of parameters as were in effect before the failure,
 +
      then the ST agent that is attempting recovery will not
 +
      propagate the ACCEPT.  If the selections of the parameters are
 +
      different, then the agent that is attempting recovery will send
 +
      the origin a NOTIFY message with the appropriate reason code
 +
      (FailureRecovery) that contains a FlowSpec that specifies the
 +
      new parameter values.  The origin may then have to change its
 +
      data generation characteristics and the stream's parameters
 +
      with a CHANGE message to use the newly recovered subtree.
  
                                    +<-+<- ACCEPT B <-------<< [3.5]
+
      3.7.2.1.        Subset
                                    V  |  <RVLId=15><SVLId=44>
 
4.1.                (wait for ACCEPTS) V  <Ref=410><LnkRef=110>
 
4.2.                                 V  +-> ACK --------------->+
 
4.3.   (wait until HID negotiated)<-+      <RVLId=44><SVLId=15>
 
                                  V         <Ref=410>
 
4.4.  <<--+<-- ACCEPT B <---------+
 
              <RVLId=4><SVLId=14>
 
              <Ref=115><LnkRef=10>
 
  
      Agent A                   Agent 2                    Agent C
+
        Subsets of this mechanism may reduce the functionality in
 +
        the following ways.  A host agent might not retain state
 +
        describing a stream that fails with a DISCONNECT message
 +
        with the appropriate reason code ("failure" or
 +
        StreamPreempted).
  
                                    +<-+<- ACCEPT C <------<< [3.10]
+
        An agent might force the NoRecovery option always to be set.
                                    |  |  <RVLId=25><SVLId=54>
+
        In this case, it will allow the option to be propagated in
                                    |  V  <Ref=510><LnkRef=210>
+
        the CONNECT message, but will propagate the REFUSE message
4.5.                                |  +-> ACK --------------->+
+
        with the appropriate reason code ("failure" or
                                    |      <Ref=510>
+
        StreamPreempted) without attempting recovery of the damaged
                                    |      <RVLId=54><SVLId=25>
+
        stream.
                                    |
 
                                    |                      Agent D
 
                                    V
 
                                    +<-+<- ACCEPT D <------<< [3.15]
 
                                    V  |  <RVLId=26><SVLId=64>
 
4.6.                (wait for ACCEPTS) V  <Ref=610><LnkRef=215>
 
4.7.                                V  +-> ACK --------------->+
 
4.8.    (wait until HID negotiated)<-+      <RVLId=64><SVLId=26>
 
                                  V        <Ref=610>
 
4.9. <<--+<- ACCEPT C <----------+
 
              <RVLId=5><SVLId=23> |
 
              <Ref=220><LnkRef=15>|
 
                                  V
 
4.10. <<--+<- ACCEPT D <----------+
 
              <RVLId=5><SVLId=23>
 
              <Ref=225><LnkRef=15>
 
  
         Figure 8. ACCEPT Processing by an Intermediate Agent
+
         If an ST agent allows stream recovery and attempts recovery
 +
        of a stream, it might choose a FlowSpec to specify exactly
 +
        the current values of the parameters, with no ranges or
 +
        options.
  
 +
  3.7.3.        A Group of Streams
  
CIP Working Group                                            
+
      There may be a need to associate related streams.  The Group
 +
      mechanism is simply an association technique that allows ST
 +
      agents to identify the different streams that are to be
 +
      associated.  Streams are in the same Group if they have the
 +
      same Group Name in the GroupName field of the (R)Group
 +
      parameter.  At this time there are no ST control messages that
 +
      modify Groups.  Group Names have the same format as stream
 +
      Names, and can share the same name space.  A stream that is a
 +
      member of a Group can specify one or more (Subgroup Identifier,
 +
      Relation) tuples.  The Relation specifies how the members of
 +
      the Subgroup of the Group are related.  The Subgroups
 +
      Identifiers need only be unique within the Group.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      Streams can be associated into Groups to support activities
 +
      that deal with a number of streams simultaneously.  The
 +
      operation of Groups of streams is a matter for further study,
 +
      and this mechanism is provided to support that study.  This
 +
      mechanism allows streams to be identified as belonging to a
 +
      given Group and Subgroup, but in order to have any effect, the
 +
      behavior that is expected of the Relation must be implemented
 +
      in the ST agents.  Possible applications for this mechanism
 +
      include the following:
  
 +
      o  Associating streams that are part of a floor-controlled
 +
          conference.  In this case, only one origin can send data
 +
          through its stream at any given time.  Therefore, at any
 +
          point where more than one stream passes through a branch
 +
          or network, only enough bandwidth for one stream needs
 +
          to be allocated.
  
        originally processedHowever, the agent does not adjust the
+
      o  Associating streams that cannot exist independentlyAn
        reservation in response to the ACCEPTIt is expected that any
+
          example of this may be the various streams that carry
        excess resource allocation will be released for use by other
+
          the audio, video, and data components of a conference,
        stream or datagram traffic through an explicit CHANGE message
+
          or the various streams that carry data from the
        initiated by the application at the origin if it does not wish
+
          different participants in a conferenceIn this case,
        to be charged for any excess resource allocations.
+
          if some ST agent must preempt more than a single stream,
 +
          and it has selected any one of the streams so
 +
          associated, then it should also preempt the rest of the
 +
          members of that Subgroup rather than preempting any
 +
          other streams.
  
 +
      o  Associating streams that must not be completed
 +
          independently.  This example is similar to the preceding
 +
          one, but relates to the stream setup phase.  In this
 +
          example, any single member of a Subgroup of streams need
 +
          not be completed unless the rest are also completed.
 +
          Therefore, if one stream becomes blocked, all the others
 +
          will also be blocked.  In this case, if there are not
 +
          enough resources to support all the conferences that are
 +
          attempted, some number of the conferences will complete
  
      3.1.8.        ACCEPT Processing by the Origin
+
          and other will be blocked, rather than all conferences
 +
          be partially completed and partially blocked.
  
        The origin will eventually receive an ACCEPT (or REFUSE or
+
      This document assumes that the creation and membership of the
        ERROR-IN-REQUEST) message from each of the targetsAs each
+
      Group will be managed by the next protocol above ST, with the
        ACCEPT is received, the application should be notified of the
+
      assistance of STFor example, the next higher protocol
        target and the resources that were successfully allocated along
+
      would request ST to create a unique Group Name and a set of
        the path to it, as specified in the FlowSpec contained in the
+
      Subgroups with specified characteristics.  The next higher
        ACCEPT message.  The application may then use the information
+
      protocol would distribute this information to the other
        to either adopt or terminate the portion of the stream to each
+
      participants that were to be members of the GroupEach
        targetWhen ACCEPTs (or failures) from all targets have been
+
      would transfer the Group Name, Subgroups, and Relations to
        received at the origin, the application is notified that stream
+
      the ST layer, which would simply include them in the stream
        setup is complete, and that data may be sent.
+
      state.
  
 +
      3.7.3.1.        Group Name Generator
  
         Application A  Agent A                  Agent 1  Agent 2
+
         This facility is provided so that an application or higher
 +
        layer protocol can obtain a unique Group Name from the ST
 +
        layer.  This is a mechanism for the application to request
 +
        the allocation of a Group Name that is independent of the
 +
        request to create a stream.  The Group Name is used by the
 +
        application or higher layer protocol when creating the
 +
        streams that are to be part of a group.  All that is
 +
        required is a function of the form:
  
                            +<-- ACCEPT B <--------<< [4.4]
+
            AllocateGroupName()
                            |    <RVLId=4><SVLId=14>
+
               -> result, GroupName
                            V    <Ref=115><LnkRef=10>
 
  5.1.                    +--> ACK ----------------->+
 
                            |    <RVLId=14><SVLId=4>
 
                            V    <Ref=115>
 
  5.2.        +<-- (inform A of B's FlowSpec)
 
               |            +<-- ACCEPT C <----------------<< [4.9]
 
              |            |    <RVLId=5><SVLId=23>
 
              |            V    <Ref=220><LnkRef=15>
 
  5.3.        |            +--> ACK ------------------------->+
 
              |            |    <RVLId=23><SVLId=5>
 
              |            V    <Ref=220>
 
  5.4.        +<-- (inform A of C's FlowSpec)
 
              |            +<-- ACCEPT D <----------------<< [4.10]
 
              |            |    <RVLId=5><SVLId=23>
 
              |            V    <Ref=225><LnkRef=15>
 
  5.5.        |            +--> ACK ------------------------->+
 
              |            |    <RVLId=23><SVLId=5>
 
              |            V    <Ref=225>
 
  5.6.        +<-- (inform A of D's FlowSpec)
 
              V
 
  5.7.    (wait until HIDs negotiated)
 
              V
 
  5.8.    (inform A open to B,C,D)
 
  
              Figure 9. ACCEPT Processing by the Origin
+
        A corresponding function to release a Group Name is also
 +
        desirable; its form is:
  
 +
            ReleaseGroupName( GroupName )
 +
              -> result
  
 +
      3.7.3.2.        Subset
  
CIP Working Group                                            
+
        Since Groups are currently intended to support
 +
        experimentation, and it is not clear how best to use them,
 +
        it is appropriate for an implementation not to support
 +
        Groups.  At this time, a subsetted ST agent may ignore the
 +
        Group parameter.  It is expected that in the future, when
 +
        Groups transition from being an experimental concept to an
 +
        operational one, it may be the case that such subsetting
 +
        will no longer be acceptable.  At that time, a new
 +
        subsetting option may be defined.
  
RFC 1190                Internet Stream Protocol            October 1990
+
  3.7.4.        HID Negotiation
  
 +
      Each data packet must carry a value to identify the stream to
 +
      which it belongs, so that forwarding can be performed.
 +
      Conceptually, this value could be the Name of the stream.  A
 +
      shorthand identifier is desirable for two reasons.  First,
 +
      since each data packet must carry this identifier, network
 +
      bandwidth efficiency suggests that it be as small as
 +
      possible.  This is particularly important for applications
 +
      that use small data packets, and that use low bandwidth
 +
      networks, such as voice across packet radio networks.
 +
      Second, the operation of mapping this identifier into a data
 +
      object that contains the forwarding information must be
 +
      performed at each intermediate ST agent in the stream.  To
 +
      minimize delay and processing overhead, this operation should
 +
      be as efficient as possible.  Most likely, this identifier
 +
      will be used to index into an internal table.  To meet these
 +
      goals, ST has chosen to use a 16-bit hop-by-hop identifier
 +
      (HID).  It is large enough to handle the foreseen number of
 +
      streams during the expected life of the protocol while small
 +
      enough not to preclude its use as a forwarding table index.
 +
      Note, however, that HID 0 is reserved for control messages,
 +
      and that HIDs 1-3 are also reserved for future use.
  
        There are several pieces of information contained in the
+
      When ST makes use of multicast ability in networks that
        FlowSpec that the application must combine before sending data
+
      provide it, a data packet multicast by an ST agent will be
        through the streamThe PDU size should be computed from the
+
      received identically by several next-hop ST agentsIn a
        minimum value of the DesPDUBytes field from all ACCEPTs and the
+
      multicast environment, the HID must be selected either by
        protocol layers above ST should be informed of the limit. It
+
      some network-wide mechanism that selects unique identifiers,
        is expected that the next higher protocol layer above ST will
+
      or it must be selected by the sender of the CONNECT message.
        segment its PDUs accordingly.  Note, however, that the MTU may
+
      Since we feel any network-wide mechanism is outside the scope
        decrease over the life of the stream if new targets are
+
      of this protocol, we propose that the previous-hop agent
        subsequently addedWhether the MTU should be increased as
+
      select the HID and send it in the CONNECT message (with the
        targets are dropped from a stream is left for further study.
+
      HID Field option set, see Section 3.6.1 (page 44)) subject to
 +
      the approval of the next-hop agentsWe call this "HID
 +
      negotiation".
  
        The available bandwidth and packet rate limits must also be
+
      As an origin ST agent is creating a stream or as an
        combined.  In this case, however, it may not be possible to
+
      intermediate agent is propagating a CONNECT message, it must
        select a pair of values that may be used for all paths, e.g.,
+
      make a routing decision to determine which targets will be
        one path may have selected a low rate of large packets while
+
      reached through which next-hop ST agents.  In some cases,
        another selected a high rate of small packetsThe application
+
      several next-hops can be reached through a network that
        may remedy the situation by either tearing down the stream,
+
      supports multicast delivery. If so, those next-hops will be
        dropping some participants, or creating a second stream.
+
      made members of a multicast group and data packets will be
 +
      sent to the groupDifferent CONNECT messages are sent to
 +
      the several next-hops even if the data packets will be sent
 +
      to the multicast group, because the CONNECT messages contain
 +
      different TargetLists and are acknowledged and accepted
 +
      separately.  However, the HID contained by the different
 +
      CONNECT message must be identical.  The ST agent selects a
 +
      16-bit quantity to be the HID and inserts it into each
  
        After any differences have been resolved (or some targets have
+
      CONNECT message that is then sent to the appropriate
        been deleted by the application to permit resolution), the
+
      next-hop.
        application at the origin should send a CHANGE message to
 
        release any excess resources along paths to those targets that
 
        exceed the resolved parameters for the stream, thereby reducing
 
        the costs that will be incurred by the stream.
 
  
 +
      The next-hop agents that receive the CONNECT messages must
 +
      propagate the CONNECT messages toward the targets, but must
 +
      also look at the HID and decide whether they can approve it.
 +
      An ST agent can only receive data packets with a given HID if
 +
      they belong to a single stream.  If the ST agent already has
 +
      an established stream that uses the proposed HID, this is a
 +
      HID collision, and the agent cannot approve the HID for the
 +
      new stream.  Otherwise the agent can approve the HID.  If it
 +
      can approve the HID, then it must make note of that HID and
 +
      it must respond with a HID-APPROVE message (unless it can
 +
      immediately respond with an ERROR-IN-REQUEST or a REFUSE).
 +
      If it cannot approve the HID then it must respond with a
 +
      HID-REJECT message.
  
       3.1.9.       Processing a REFUSE Message
+
       An agent that sends a CONNECT message with the H bit set
 +
      awaits its acknowledgment message (which could be a
 +
      HID-ACCEPT, HID-REJECT, or an ERROR-IN-REQUEST) from the
 +
      next-hops independently of receiving ACCEPT messages. If it
 +
      does not receive an acknowledgment within timeout ToConnect,
 +
      it will resend the CONNECT. If each next-hop agent responds
 +
      with a HID-ACCEPT, this implies that they have each approved
 +
      of the HID, so it can be used for all subsequent data
 +
      packets. If one or more next-hops respond with an
 +
      HID-REJECT, then the agent that selected the HID must select
 +
      another HID and send it to each next-hop in a set of
 +
      HID-CHANGE messages.  The next-hop agents must respond to
 +
      (and thus acknowledge) these HID-CHANGE messages with either
 +
      a HID-ACCEPT or a HID-REJECT (or, in the case of an error, an
 +
      ERROR-IN-REQUEST, or a REFUSE if the next-hop agent wants to
 +
      abort the HID negotiation process after rejecting NHIDAbort
 +
      proposed HIDs).  If the agent does not receive such a
 +
      response within timeout ToHIDChange, it will resend the
 +
      HID-CHANGE up to NHIDChange times.  If any next-hop agents
 +
      respond with a REFUSE message that specifies all the targets
 +
      that were included in the corresponding CONNECT, then that
 +
      next-hop is removed from the negotiation.  The overall
 +
      negotiation is complete only when the agent receives a
 +
      HID-ACCEPT to the same proposed HID from all the next-hops
 +
      that do not respond with an ERROR-IN-REQUEST or a REFUSE.
  
        REFUSE messages are used to indicate a failure to reach an
+
      This negotiation may continue an indeterminate length of
        application at a target;  they are propagated toward the origin
+
      time.  In fact, the CONNECT messages could propagate to the
        of a stream. They are used in three situations:
+
      targets and their ACCEPT messages may potentially propagate
 +
      back to the origin before the negotiation is complete.  If
 +
      this were permitted, the origin would not be aware of the
 +
      incomplete negotiation and could begin to send data packets.
 +
      Then the agent that is attempting to select a HID would have
 +
      to discard any data rather than sending it to the next-hops
 +
      since it might not have a valid HID to send with the data.
  
          1  during stream setup or expansion to indicate that there
+
      To prevent this situation, an ACCEPT should not be propagated
            is no satisfactory path from an ST agent to a target,
+
      back to the previous-hop until the HID negotiation with the
 +
      next-hops has been completed.
  
          2 when the application at the target either does not
+
      Although it is possible that the negotiation extends for an
            exist does not wish to be a participant, or wants to
+
      arbitrary length of time, we consider this to be very
            cease being a participant, and
+
      unlikely. Since the HID is only relevant across a single
 +
      hop, we can estimate the probability that a randomly selected
 +
      HID will conflict with the HID of an established stream.
 +
      Consider a stream in which the hop from an ST agent to ten
 +
      next-hop agents is through the multicast facility of a given
 +
      network.  Assume also that each of the next-hop agents
 +
      participates in 1000 other streams, and that each has been
 +
      created with a different HID.  A randomly selected 16-bit HID
 +
      will have a probability of greater than 85.9% of succeeding
 +
      on the first try, 98.1% of succeeding on the second, and
 +
      99.8% of succeeding on the third.  We therefore suggest that
 +
      a 16-bit HID space is sufficiently large to support ST until
 +
      better multicast HID selection procedures, e.g., HID servers,
 +
      can be deployed.
  
          3 when a failure has been detected and the agents are
+
      An obvious way to select the HID is for the ST agents to use
            trying to find a suitable path around the failure.
+
      a random number generator as suggested above. An alternate
 +
      mechanism is for the intermediate agents to use the HID
 +
      contained in the incoming CONNECT message for all the
 +
      outgoing CONNECT messages, and generate a random number only
 +
      as a second choice.  In this case, the origin ST agent would
  
        The cases are distinguished by the ReasonCode field and an
+
      Agent 3                      Agent B
        agent receiving a REFUSE message must examine that field in
 
        order to determine the proper action to be taken.  In
 
        particular, if the ReasonCode indicates that the CONNECT
 
        message reached the target then the REFUSE should be propagated
 
        back to the origin, releasing resources as appropriate along
 
        the way.  If the ReasonCode indicates that
 
  
 +
  1.    +-> CONNECT B -------------->+
 +
              <RVLId=0><SVLId=32>      |
 +
              <Ref=315><HID=5990>      V
 +
  2.            (Check HID Table, 5990 busy, 6000-11 unused)
 +
                                      V
 +
  3.    +<- HID-REJECT --------------+
 +
          |  <RVLId=32><SVLId=45>
 +
          |  <Ref=315><HID=5990>
 +
          V  <FreeHIDs=5990:0000FFF0>
 +
  4.    +-> HID-CHANGE  ------------>+
 +
              <RVLId=45><SVLId=32>    |
 +
              <Ref=320><HID=6000>      V
 +
  5.            (Check HID Table, 6000 (still) available)
 +
                                      V
 +
  6.    +<- HID-APPROVE -------------+
 +
              <RVLId=32><SVLId=45>
 +
              <Ref=320><HID=6000>
  
 +
  7.    (Both parties have now agreed to use HID 6000)
  
 +
      Figure 18.  Typical HID Negotiation (No Multicasting)
  
CIP Working Group                                           
+
      be responsible for generating the HID, and the same HID could
 +
      be propagated for the entire stream.  This approach has the
 +
      marginal advantage that the HID could be created by a higher
 +
      layer protocol that might have global knowledge and could
 +
      select small, globally unique HIDs for all the streams.  While
 +
      this is possible, we leave it for further study.
  
RFC 1190                Internet Stream Protocol            October 1990
+
    Agent 2                          Agent C        Agent D
  
 +
1.    +->+-> CONNECT ---------------------------------->+
 +
        |  <RVLId=0><SVLId=26>                        |
 +
        |  <Ref=250><HID=4824>                        |
 +
        V  <Mcast=224.1.18.216,01:00:5E:01:12:d8>    |
 +
2.      +-> CONNECT --------------------+              |
 +
            <RVLId=0><SVLId=25>        |              |
 +
            <Ref=252><HID=4824>        |              V
 +
3.          <Mcast=224.1.18.216,        V      (Check HID Table)
 +
4.            01:00:5E:01:12:d8> (Check HID Table)  (4824 ok)
 +
                                    (4824 busy)  (4800-4809 ok)
 +
                                  (4800-4820 ok)      |
 +
                                        V              |
 +
5.      +<- HID-REJECT -----------------+              |
 +
        |  <RVLId=25><SVLId=54>                      |
 +
        |  <Ref=252><HID=4824>                        |
 +
        V  <FreeHIDs=4824:FFFFF800>                  V
 +
6.    +<-+<- HID-APPROVE -------------------------------+
 +
      |      <RVLId=26><SVLId=64>
 +
      |      <Ref=250><HID=4824>
 +
      V      <FreeHIDs=4824:FFC00080>
 +
      (find common HID 4800)
 +
      V
 +
7.    +->+-> HID-CHANGE ------------------------------->+
 +
        |  <RVLId=64><SVLId=26>                      |
 +
        V  <Ref=253><HID=4800>                        |
 +
8.      +-> HID-CHANGE ---------------->+              |
 +
            <RVLId=54><SVLId=25>        |              V
 +
9.          <Ref=254><HID=4800>        V      (Check HID Table)
 +
10.                              (Check HID Table)  (4800 ok)
 +
                                  (4800-4820 ok) (4800-4809 ok)
 +
                                        V              |
 +
11.      +<- HID-APPROVE ----------------+              |
 +
        |  <RVLId=25><SVLId=54>                      |
 +
        |  <Ref=254><HID=4800>                        |
 +
        V  <FreeHIDs=4800:7FFFF800>                  V
 +
12.  +<-+<- HID-APPROVE -------------------------------+
 +
      |      <RVLId=26><SVLId=64>
 +
      |      <Ref=253><HID=4800>
 +
      V      <FreeHIDs=4800:7FC00080>
 +
13.  (all parties have now agreed to use HID 4800)
  
        the CONNECT message did not reach the target then the
+
              Figure 19Multicast HID Negotiation
        intermediate (origin) ST agent(s) should check for alternate
 
        routes to the target before propagating the REFUSE back another
 
        hop toward the originThis implies that an agent must keep
 
        track of the next-hops that it has tried, on a target by target
 
        basis, in order not to get caught in a loop.
 
  
        An ST agent that receives a REFUSE message must acknowledge it
+
  Agent 2                  Agent C        Agent D    Agent 3
        by sending an ACK to the next-hop.  The REFUSE must also be
 
        propagated back to the previous-hop ST agent.  Note that the ST
 
        agent may not have any information about the target in
 
  
 +
  1.  +----> CONNECT B ------------------------------------>+
 +
          <RVLId=0><SVLId=24>                            V
 +
  2.          <Ref=260><HID=4800>                    (Check HID Table)
 +
          <Mcast=224.1.18.216,            (4800 busy, 4801-4810 ok)
 +
            01:00:5E:01:12:d8>                            V
 +
  3.  +<---- HID-REJECT <-----------------------------------+
 +
    |      <RVLId=24><SVLId=33>
 +
    |      <Ref=260><HID=4824>
 +
    V      <FreeHIDs=4824:7FE00000>
 +
  4.  (find common HID 4810)
 +
    V
 +
  5.  +->+-> HID-CHANGE ----------------------------------->+
 +
      |  <RVLId=33><SVLId=24>                          |
 +
      V  <Ref=262><HID=4810>                            |
 +
  6.      +-> HID-CHANGE-ADD ------------------->+          |
 +
      |  <RVLId=64><SVLId=26>              |          V
 +
  7.      V  <Ref=263><HID=4810>                |  (Check HID Table)
 +
  8.      +-> HID-CHANGE-ADD ---->+              |    (4801-4815 ok)
 +
          <RVLId=54><SVLId=25>|              V          |
 +
  9.          <Ref=265><HID=4810> V      (Check HID Table)  |
 +
  10.                    (Check HID Table) (4810 busy)      |
 +
                        (4801-4812 ok) (4801-4807 ok)    |
 +
                              V              |          |
 +
  11.    +<- HID-APPROVE <-------+              |          |
 +
      |  <RVLId=25><SVLId=54>              |          |
 +
      |  <Ref=265><HID=4810>                |          |
 +
      V  <FreeHIDs=4810:7FD8000>            V          |
 +
  12.    +<- HID-REJECT <-----------------------+          |
 +
      |  <RVLId=26><SVLId=64>                          |
 +
      |  <Ref=263><HID=4810>                            |
 +
      V  <FreeHIDs=4810:7F000000>                      V
 +
  13.  +<-+<- HID-APPROVE <----------------------------------+
 +
    |      <RVLId=24><SVLId=33>
 +
    |      <Ref=262><HID=4810>
 +
    V      <FreeHIDs=4810:7FDF0000>
 +
  14.  +->+-> HID-CHANGE-DELETE ---------------------------->+
 +
    |  |  <RVLId=33><SVLId=24>                          |
 +
    |  V  <Ref=266><HID=4810>                            |
 +
  15.  |  +-> HID-CHANGE-DELETE ->+                          |
 +
    |      <RVLId=54><SVLId=25>|                          |
 +
    |      <Ref=268><HID=4810> V                          |
 +
  16.  |  +<- HID-APPROVE --------+                          |
 +
    |      <RVLId=25><SVLId=54>                          |
 +
    |      <Ref=268><HID=0>                              V
 +
  17.  |  +<- HID-APPROVE -----------------------------------+
 +
    |      <RVLId=24><SVLId=33>
 +
    V      <Ref=266><HID=0>
 +
  18.  (find common HID 4801)
  
  ApplAgent A                  Agent 2                Agent E
+
            Figure 20Multicast HID Re-Negotiation (part 1)
                                              (proc E NOT listening)
 
1. (add E)
 
2.    +----->+-> CONNECT E ---------->+->+
 
                <RVLId=23><SVLId=5>  |  |
 
                <Ref=65>            V  |
 
3.          +<-- ACK <---------------+  |
 
                  <RVLId=5><SVLId=23>    V
 
4.                <Ref=65>        (routing to E)
 
                                        V
 
5.                          (reserve resources 2 to E)
 
                                        V
 
6.                                      +--> CONNECT E --------->+
 
                                              <RVLId=0><SVLId=27> |
 
                                              <Ref=115><HID=4600> |
 
                                                                  V
 
7.                                    +<-+<- REFUSE B <-----------+
 
                                      |  |  <RVLId=27><SVLId=74>
 
                                      |  |  <Ref=705><LnkRef=115>
 
                                      |  V  <RC=SAPUnknown>
 
8.                                    |  +-> ACK ---------------->+
 
                                      |  |  <RVLId=74><SVLId=27> |
 
                                      |  V  <Ref=705>            |
 
9.                                    |  (free link 27)          V
 
10.                                  V              (free link 74)
 
11.          +<- REFUSE B <-----------+
 
            |  <RVLId=5><SVLId=23>  |
 
            |  <Ref=550><LnkRef=65> V
 
12.          |  <RC=SAPUnknown>  (free resources 2 to E)
 
            V
 
13.          +-> ACK  --------------->+
 
            |  <RVLId=23><SVLId=5>  |
 
            |  <Ref=550>            V
 
14.          V            (keep link 23 for C,D)
 
15.  (keep link 5 for C,D)
 
      V
 
16.  (inform application failed SAPUnknown)
 
 
 
                  Figure 10.  Sending REFUSE Message
 
  
 +
  Agent 2                  Agent C        Agent D    Agent 3
  
CIP Working Group                                           
+
  18.  (find common HID 4801)
 
+
    V
RFC 1190               Internet Stream Protocol           October 1990
+
  19.  +->+-> HID-CHANGE ----------------------------------->+
 
+
      |  <RVLId=33><SVLId=24>                          |
 
+
      V  <Ref=270><HID=4801>                            |
         the TargetList.  This may result from interacting DISCONNECT
+
  20.    +-> HID-CHANGE-ADD ------------------->+          |
         and REFUSE messages and should be logged and silently ignored.
+
      |  <RVLId=64><SVLId=26>              |          V
 +
  21.    V  <Ref=273><HID=4801>               |  (Check HID Table)
 +
  22.    +-> HID-CHANGE-ADD ---->+              |    (4801-4815 ok)
 +
          <RVLId=54><SVLId=25>|              V          |
 +
  23.        <Ref=274><HID=4801> V      (Check HID Table)  |
 +
  24.                    (Check HID Table)(4801-4807 ok)    |
 +
                        (4801-4812 ok)      |          |
 +
                              V              |          |
 +
  25.    +<- HID-APPROVE <-------+              |          |
 +
      |  <RVLId=25><SVLId=54>              |          |
 +
      |  <Ref=274><HID=4801>                |          |
 +
      V  <FreeHIDs=4801:3FF80000>          V          |
 +
  26.    +<- HID-APPROVE <----------------------+          |
 +
      |  <RVLId=26><SVLId=64>                          |
 +
      |  <Ref=273><HID=4801>                            |
 +
      V  <FreeHIDs=4801:3F000000>                      V
 +
  27.  +<-+<- HID-APPROVE <----------------------------------+
 +
    |      <RVLId=24><SVLId=33>
 +
    |      <Ref=270><HID=4801>
 +
    V      <FreeHIDs=4801:3FFF0000>
 +
  28.  (switch data stream to HID 4801, drop 4800)
 +
    V
 +
  29.  +->+-> HID-CHANGE-DELETE ---------------->+
 +
      |  <RVLId=64><SVLId=26>              |
 +
      V  <Ref=275><HID=4800>                |
 +
  30.    +-> HID-CHANGE-DELETE ->+              |
 +
          <RVLId=54><SVLId=25>|              |
 +
           <Ref=277><HID=4800> V              |
 +
  31.  +<-+<- HID-APPROVE --------+              |
 +
    |      <RVLId=25><SVLId=54>              |
 +
    V      <Ref=277><HID=0>                  V
 +
  32.  +<-+<- HID-APPROVE -----------------------+
 +
    |      <RVLId=26><SVLId=64>
 +
    V      <Ref=275><HID=0>
 +
    (all parties have now agreed to use HID 4801)
 +
 
 +
            Figure 20.  Multicast HID Re-Negotiation (part 2)
 +
 
 +
      3.7.4.1.        Subset
 +
 
 +
         The above mechanism can operate exactly as described even if
 +
        the ST agents do not all use the entire 16 bits of the HID.
 +
        A low capacity ST agent that cannot support a large number
 +
        of simultaneous streams may use only some of the bits in the
 +
        HID, say for example the low order byte.  This may allow
 +
        this disadvantaged agent to use smaller internal data
 +
        structures at the expense of causing HID collisions to occur
 +
         more often.  However, neither the disadvantaged agent's
 +
        previous-hop nor its next-hops need be aware of its
 +
        limitations.  In the HID negotiation, the negotiators still
 +
        exchange a 16-bit quantity.
  
        If, after deleting the specified target, the next-hop has no
+
  3.7.5.        IP Encapsulation of ST
        remaining targets, then those resources associated with that
 
        next-hop agent may be released. Note that network resources
 
        may not actually be released if network multicasting is being
 
  
 +
      ST packets may be encapsulated in IP to allow them to pass
 +
      through routers that don't support the ST Protocol.  Of course,
 +
      ST resource management is precluded over such a path, and
 +
      packet overhead is increased by encapsulation, but if the
 +
      performance is reasonably predictable this may be better than
 +
      not communicating at all.  IP encapsulation may also be
 +
      required either for enhanced security (see Section 3.7.8 (page
 +
      67)) or for user-space implementations of ST in hosts that
 +
      don't allow demultiplexing on the IP Version Number field (see
 +
      Section 4 (page 75)), but do allow access to raw IP packets.
  
  Appl.   Agent A       Agent 2 Agent 1 Agent 3              Agent B
+
      IP-encapsulated ST packets begin with a normal IP header. Most
 +
       fields of the IP header should be filled in according to the
 +
      same rules that apply to any other IP packet. Three fields of
 +
      special interest are:
  
1.                                      (network from 1 to B fails)
+
      o  Protocol is 5 to indicate an ST packet is enclosed, as
2. (add B)
+
           opposed to TCP or UDP, for example. The assignment of
3.  +-> CONNECT B ----------------->+
+
           protocol 5 to ST is an arranged coincidence with the
        <RVLId=0><SVLId=6>          |
+
          assignment of IP Version 5 to ST [18].
        <Ref=35><HID=100>           |
+
 
3.   +<- HID-APPROVE <---------------+
+
      o Destination Address is that of the next-hop ST agent.
        <RVLId=6><SVLId=11>        |
+
           This may or may not be the target of the ST stream.
        <Ref=35><HID=100>           V
+
          There may be an intermediate ST agent to which the
4.                      (routing to B: no route)
+
          packet should be routed to take advantage of service
                                    V
+
          guarantees on the path past that agentSuch an
5.   +<-+-- REFUSE B ----------------+
+
           intermediate agent would not be on a directly-connected
    |  |  <RVLId=6><SVLId=11>
+
          network (or else IP encapsulation wouldn't be needed),
    | |  <Ref=155><LnkRef=35>
+
          so it would probably not be listed in the normal routing
    |  V  <RC=NoRouteToDest>
+
          table. Additional routing mechanisms, not defined here,
6.   |  +-> ACK -------------------->+
+
          will be required to learn about such agents.
    |  |  <RVLId=11><SVLId=6>      V
 
7.  |  V  <Ref=155>           (drop link 6)
 
8.   V  (drop link 11)
 
9.  (find alternative route: via agent 2)
 
10.  (resources from A to 2 already allocated:
 
    V  reuse control link & HID, no additional resources required)
 
11+-> CONNECT B -------->+->+
 
        <RVLId=23><SVLId=5>|  |
 
        <Ref=40>           V  |
 
12.  +<- ACK <--------------+  |
 
        <RVLId=5><SVLId=23>  V
 
13.      <Ref=40>    (routing to B: via agent 3)
 
                            V
 
14.                         +-> CONNECT B -->+
 
15.                      <RVLId=0><SVLId=24> +-> CONNECT B --------->+
 
                        <Ref=245><HID=4801> V  <RVLId=0><SVLId=32> |
 
16.                         +<- HID-APPROVE -+  <Ref=310><HID=6000> |
 
                                <RVLId=24><SVLId=33>                |
 
                                <Ref=245><HID=4801>                  V
 
17.                                          +<- HID-APPROVE --------+
 
                                                <RVLId=32><SVLId=45>|
 
                                                <Ref=310><HID=6000> V
 
18.        (ACCEPT handling follows normally to complete stream setup)
 
  
          Figure 11. Routing Around a Failure
+
      o Type-of-Service may be set to an appropriate value for
 +
          the service being requested (usually low delay, high
  
 +
      throughput, normal reliability).  This feature is not
 +
      implemented uniformly in the Internet, so its use can't be
 +
      precisely defined here.
  
 +
      Since there can be no guarantees made about performance across
 +
      a normal IP network, the ST agent that will encapsulate should
 +
      modify the Desired FlowSpec parameters when the stream is being
 +
      established to indicate that performance is not guaranteed.  In
 +
      particular, Reliability should be set to the minimum value
 +
      (1/256), and suitably large values should be added to the
 +
      Accumulated Mean Delay and Accumulated Delay Variance to
 +
      reflect the possibility that packets may be delayed up to the
 +
      point of discard when there is network congestion.  A suitably
 +
      large value is 255 seconds, the maximum packet lifetime as
 +
      defined by the IP Time-to-Live field.
  
CIP Working Group                                           
+
      IP encapsulation adds little difficulty for the ST agent that
 +
      receives the packet.  The IP header is simply removed, then the
 +
      ST header is processed as usual.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      The more difficult part is during setup, when the ST agent must
 +
      decide whether or not to encapsulate.  If the next-hop ST agent
 +
      is on a remote network and the route to that network is through
 +
      a router that supports IP but not ST, then encapsulation is
 +
      required.  As mentioned in Section 3.8.1 (page 69), routing
 +
      table entries must be expanded to indicate whether the router
 +
      supports ST.
  
 +
      On forwarding, the (mostly constant) IP Header must be inserted
 +
      and the IP checksum appropriately updated.
  
        used since they may still be required for traffic to other
+
      On a directly connected network, though, one might want to
        next-hops in the multicast group.
+
      encapsulate only when sending to a particular destination host
 +
      that does not allow demultiplexing on the IP Version Number
 +
      field.  This requires the routing table to include host-route
 +
      as well as network-route entries.  Host-route entries might
 +
      require static definition if the hosts do not participate in
 +
      the routing protocols.  If packet size is not a critical
 +
      performance factor, one solution is always to encapsulate on
 +
      the directly connected network whenever some hosts require
 +
      encapsulation.  Those that don't require the encapsulation
 +
      should be able to remove it upon reception.
  
        When the REFUSE reaches a origin, the origin sends an ACK and
+
      3.7.5.1.        IP Multicasting
        notifies the application via the next higher layer protocol
 
        that the target listed in the TargetList is no longer part of
 
        the stream and also if the stream has no remaining targets. If
 
        there are no remaining targets, the application may wish to
 
        terminate the stream.
 
  
         Figure 10 illustrates the protocol exchanges for processing a
+
         If an ST agent must use IP encapsulation to reach multiple
         REFUSE generated at the target, either because the target
+
         next-hops toward different targets, then either the packet
         application is not running or that the target application
+
         must be replicated for transmission to each next-hop, or IP
         rejects membership in the stream.  Figure 11 illustrates the
+
         multicasting [6] may be used if it is implemented in the
         case of rerouting around a failure by an intermediate agent
+
         next-hop ST agents and in the intervening IP routers.
        that detects a failure or receives a refuse.  The protocol
 
        exchanges used by an application at the target to delete itself
 
        from the stream is discussed in Section 3.3.3 (page 35).
 
  
 +
        This is analogous to using network-level service to
 +
        multicast to several next-hop agents on a directly connected
 +
        network.
  
  3.2.       Data Transfer
+
        When the stream is established, the collection of next-hop
 +
        ST agents must be set up as an IP multicast group.  It may
 +
        be necessary for the ST agent that wishes to send the IP
 +
        multicast to allocate a transient multicast group address
 +
        and then tell the next-hop agents to join the group.  Use of
 +
        the MulticastAddress parameter (see Section 4.2.2.7 (page
 +
        86)) provides one way that the information may be
 +
        communicated, but other techniques are possible.  The
 +
        multicast group address in inserted in the Destination
 +
        Address field of the IP encapsulation when data packets are
 +
        transmitted.
  
      At the end of the connection setup phase, the origin, each target,
+
        A block of transient IP multicast addresses, 224.1.0.0 -
      and each intermediate ST agent has a database entry that allows it
+
        224.1.255.255, has been allocated for this purposeThere
      to forward the data packets from the origin to the targets and to
+
        are 2^16 addresses in this block, allowing a direct mapping
      recover from failures of the intermediate agents or networksThe
+
        with 16-bit HIDs, if appropriate.  The mechanisms for
      database should be optimized to make the packet forwarding task
+
        allocating these addresses are not defined here.
      most efficient.  The time critical operation is an intermediate
 
      agent receiving a packet from the previous-hop agent and
 
      forwarding it to the next-hop agent(s).  The database entry must
 
      also contain the FlowSpec, utilization information, the address of
 
      the origin and previous-hop, and the addresses of the targets and
 
      next-hops, so it can perform enforcement and recover from
 
      failures.
 
  
      An ST agent receives data packets encapsulated by an ST header.  A
+
        In addition, two permanent IP multicast addresses have been
      data packet received by an ST agent contains the non-zero HID
+
        assigned to facilitate experimentation with exchange of
      assigned to the stream for the branch from the previous-hop to
+
        routing or other information among ST agentsThose
      itselfThis HID was selected so that it is unique at the
+
        addresses are:
      receiving ST agent and thus can be used, e.g., as an index into
 
      the database, to obtain quickly the necessary replication and
 
      forwarding information.
 
  
      The forwarding information will be network and implementation
+
            224.0.0.7    All ST routers
      specific, but must identify the next-hop agent or agents and their
+
            224.0.0.8    All ST hosts
      respective HIDs. It is suggested that the cached information for
 
      a next-hop agent include the local network address of the next-
 
      hop. If the data packet must be forwarded to multiple next-hops
 
      across a single network that supports multicast, the database may
 
      specify a single HID and may identify the next-hops by a (local
 
      network) multicast address.
 
  
 +
        An ST router is an ST agent that can pass traffic between
 +
        attached networks;  an ST host is an ST agent that is
 +
        connected to a single network or is not permitted to pass
 +
        traffic between attached networks.  Note that the range of
 +
        these multicasts is normally just the attached local
 +
        network, limited by setting the IP time-to-live field to 1
 +
        (see [6]).
  
 +
  3.7.6.        Retransmission
  
CIP Working Group                                           
+
      The ST Control Message Protocol is made reliable through use of
 +
      retransmission when an expected acknowledgment is not received
 +
      in a timely manner.  The problem of when to send a
 +
      retransmission has been studied for protocols such as TCP [2]
 +
      [10] [11].  The problem should be simpler for ST since control
 +
      messages usually only have to travel a single hop and they do
 +
      not contain very much data.  However, the algorithms developed
 +
      for TCP are sufficiently simple that their use is recommended
 +
      for ST as well;  see [2].  An implementor might, for example,
 +
      choose to keep statistics separately for each
  
RFC 1190                Internet Stream Protocol            October 1990
+
      neighboring ST agent, or combined into a single statistic for
 +
      an attached network.
  
 +
      Estimating the packet round-trip time (RTT) is a key function
 +
      in reliable transport protocols such as TCP.  Estimation must
 +
      be dynamic, since congestion and resource contention result in
 +
      varying delays.  If RTT estimates are too low, packets will be
 +
      retransmitted too frequently, wasting network capacity.  If RTT
 +
      estimates are too high, retransmissions will be delayed
 +
      reducing network throughput when transmission errors occur.
 +
      Article [11] identifies problems that arise when RTT estimates
 +
      are poor, outlines how RTT is used and how retransmission
 +
      timeouts (RTO) are estimated, and surveys several ways that RTT
 +
      and RTO estimates can be improved.
  
       If the network does not support multicast, or the next-hops are on
+
       Note the HELLO/ACK mechanism described in Section 3.7.1.2 (page
       different networks, then the database must indicate multiple
+
       49) can give an estimate of the RTT and its variance.  These
       (next-hop, HID) tuples.  When multiple copies of the data packet
+
       estimates are also important for use with the delay and delay
       must be sent, it may be necessary to invoke a packet replicator.
+
       variance entries in the FlowSpec.
  
      Data packets should not require fragmentation as the next higher
+
  3.7.7.       Routing
      protocol layer at the origin was informed of the minimum MTU over
 
      all paths in the stream and is expected to segment its PDUs
 
      accordingly. However, it may be the case that a data packet that
 
      is being rerouted around a failed network component may be too
 
      large for the MTU of an intervening network. This should be a
 
      transient condition that will be corrected as soon as the new
 
      minimum MTU has been propagated back to the origin.  Disposition
 
      by a mechanism other than dropping of the too large PDUs is left
 
      for further study.
 
  
 +
      ST requires access to routing information in order to select a
 +
      path from an origin to the destination(s).  However, routing is
 +
      considered to be a separate issue and neither the routing
 +
      algorithm nor its implementation is specified here.  ST should
 +
      operate equally well with any reasonable routing algorithm.
  
  3.3.      Modifying an Existing Stream
+
      While ST may be capable of using several types of information
 +
      that are not currently available, the minimal information
 +
      required is that provided by IP, namely the ability to find an
 +
      interface and next hop router for a specified IP destination
 +
      address and Type of Service. Methods to make more information
 +
      available and to use it are left for further study. For
 +
       initial ST implementations, any routing information that is
 +
      required but not automatically provided will be assumed to be
 +
      manually configured into the ST agents.
  
      Some applications may wish to change the parameters of a stream
+
  3.7.8.       Security
      after it has been created. Possible changes include adding or
 
      deleting targets and changing the FlowSpec. These are described
 
      below.
 
  
 +
      The ST Protocol by itself does not provide security services.
 +
      It is more vulnerable to misdelivery and denial of service than
 +
      IP since the ST Header only carries a 16-bit HID for
 +
      identification purposes.  Any information, such as source and
 +
      destination addresses, which a higher-layer protocol might use
 +
      to detect misdelivery are the responsibility of either the
 +
      application or higher-layer protocol.
  
       3.3.1.       Adding a Target
+
       ST is less prone to traffic analysis than IP since the only
 +
      identifying information contained in the ST Header is a hop-
 +
      by-hop identifier (HID). However, the use of a HID is also
 +
      what makes ST more vulnerable to denial of service since an ST
 +
      agent has no reliable way to detect when bogus traffic is
 +
      injected into, and thus consumes bandwidth from, a user's
 +
      stream. Detection can be enhanced through use of per-interface
 +
      forwarding tables and verification of local network source and
 +
      destination addresses.
  
        It is possible for an application to add a new target to an
+
      We envision that applications that require security services
        existing stream any time after ST has incorporated information
+
      will use facilities, such as the Secure Digital Networking
        about the stream into its database.  At a high level, the
+
      System (SDNS) layer 3 Security Protocol (SP3/D) [19] [20]In
        application entities exchanges whatever information is
+
      such an environment, ST PDUs would first be encapsulated in an
        necessaryAlthough the mechanism or protocol used to
+
      IP Header, using IP Protocol 5 (ST) as described in Section
        accomplish this is not specified here, it is necessary for the
+
      3.7.5 (page 64).  These IP datagrams would then be secured
        higher layer protocol to inform the host ST agent at the origin
+
      using SP3/D, which results in another IP Protocol 5 PDU that
        of this event.  The host ST agent at the target must also be
+
      can be passed between ST agents.
        informed unless this had previously been done.  Generally, the
 
        transfer of a target list from an ST agent to another, or from
 
        a higher layer protocol to a host ST agent, will occur
 
        atomically when the CONNECT is received. Any information
 
        concerning a new target received after this point can be viewed
 
        as a stream expansion by the receiving ST agent. However, it
 
        may be possible that an ST agent can utilize such information
 
        if it is received before it makes the relevant routing
 
        decisions.  These implementation details are not specified
 
        here, but implementations must be prepared to receive CONNECT
 
        messages that represent expansions of streams that are still in
 
        the process of being setup.
 
  
        To expand an existing stream, the origin issues one or more
+
      This memo does not specify how an application invokes security
        CONNECT messages that contain the Name, the VLId, the FlowSpec,
+
      services.
        and the TargetList specifying the new target or targets. The
 
        origin issues multiple CONNECT messages if
 
  
 +
3.8.      ST Service Interfaces
  
CIP Working Group                                           
+
  ST has several interfaces to other modules in a communication
 +
  system.  ST provides its services to applications or transport-
 +
  level protocols through its "upper" interface (or SAP).  ST in
 +
  turn uses the services provided by network layers, management
 +
  functions (e.g., address translation and routing), and IP.  The
 +
  interfaces to these modules are described in this section in the
 +
  form of subroutine calls.  Note that this does not mean that an
 +
  implementation must actually be implemented as subroutines, but is
 +
  instead intended to identify the information to be passed between
 +
  the modules.
  
RFC 1190                Internet Stream Protocol            October 1990
+
  In this style of outlining the module interfaces, the information
 +
  passed into a module is shown as arguments to the subroutine call.
 +
  Return information and/or success/failure indications are listed
 +
  after the arrow ("->") that follows the subroutine call.  In
 +
  several cases, a list of values must either be passed to or
 +
  returned from a module interface.  Examples include a set of
 +
  target addresses, or the mappings from a target list to a set of
 +
  next hop addresses that span the route to the originally listed
 +
  targets.  When such a list is appropriate, the values repeated for
 +
  each list element are bracketed and an asterisk is added to
 +
  indicate that zero, one, or many list elements can be passed
 +
  across the interface (e.g., "<target>*" means zero, one, or more
 +
  targets).
  
 +
  3.8.1.        Access to Routing Information
  
        either the targets are to be reached through different next-hop
+
      The design of routing functions that can support a variety of
        agents, or a single CONNECT message is too large for the
+
      resource management algorithms is difficult.  In this section
        network MTUThe HID Field option is not set since the HID has
+
      we suggest a set of preliminary interfaces suitable for use in
        already been (or is being) negotiated for the hop;
+
      initial experimentsWe expect that these interfaces will
        consequently, the CONNECT is acknowledged with an ACK instead
+
      change as we gain more insight into how routing, resource
        of a HID-REJECT or HID-APPROVE.
+
      allocation, and decision making elements are best divided.
  
 +
      Routing functions are required to identify the set of potential
 +
      routes to each destination site.  The routing functions should
 +
      make some effort to identify routes that are currently
 +
      available and that meet the resource requirements. However,
 +
      these properties need not be confirmed until the actual
 +
      resource allocation and connection setup propagation are
 +
      performed.
  
Application Agent A              Agent 2                    Agent E
+
      The minimum capability required of the interface to routing is
 +
      to identify the network interface and next hop toward a given
 +
      target. We expect that the traditional routing table will need
 +
      to be extended to include information that ST requires such as
 +
      whether or not a next hop supports ST, and, if so, whether or
 +
      not IP encapsulation (see Section 3.7.5 (page 64)) is required
 +
      to communicate with it.  In particular, host entries will be
 +
      required for hosts that can only support ST through
 +
      encapsulation because the IP software either is not capable of
 +
      demultiplexing datagrams based on the IP Version Number field,
 +
      or the application interface only supports access to raw IP
 +
      datagrams.  This interface is illustrated by the function:
  
1.  (open E)
+
        FindNextHop( destination, TOS )
2.      V                                            (proc E listening)
+
             -> result, < interface, next hop, ST-capable,
3.      +->(routing to E)
+
               MustEncapsulate >*
          V
+
 
4.        +-> (check resources from A to Agent 2: already allocated,
+
      However, the resource management functions can best tradeoff
          V  reuse control link & HID, no additional resources needed)
+
      among alternative routes when presented with a matrix of all
5.        +-> CONNECT E --------->+->+
+
      potential routesThe matrix entry corresponding to a
              <RVLId=23><SVLId=5> |  V
+
      destination and a next hop would contain the estimated
6.             <Ref=20>            V  (routing to E)
+
      characteristics of the corresponding pathwayUsing this
7.        +<- ACK <---------------+  V
+
      representation, the resource management functions can quickly
              <RVLId=5><SVLId=23>    +->(reserve resources 2 to E)
+
      determine the next hop sets that cover the entire destination
               <Ref=20>                 V
+
      list, and compare the various parameters of the tradeoff
8.                                      +-> CONNECT E --------->+
+
      between the guarantees that can be promised by each set. An
                                            <RVLId=0><SVLId=27> |
+
      interface that returns a compressed matrix, listing the
                                            <Ref=230><HID=4800> |
+
      suitable routes by next hop and the destinations reachable
9.                                      +<- HID-APPROVE <-------+
+
      through each, is illustrated by the function:
                                            <RVLId=27><SVLId=74>|
 
                                            <Ref=230><HID=4800> V
 
10.                                              (proc E accepts)
 
11.                                    (wait until HID negotiated)
 
                                                                V
 
12.                                   +<-+<- ACCEPT E <----------+
 
                                      V |  <RVLId=27><SVLId=74>
 
13.                  (wait for ACCEPTS)  V  <Ref=710><LnkRef=230>
 
14.                                   V +-> ACK --------------->+
 
15.      (wait until HID negotiated)<-+      <RVLId=74><SVLId=27>
 
                                  V        <Ref=710>
 
16.          +<- ACCEPT E <-------+
 
              |  <RVLId=5><SVLId=23>
 
              V  <Ref=235><LnkRef=20>
 
17.          +-> ACK ------------>+
 
              |  <RVLId=23><SVLId=5>
 
              V  <Ref=235>
 
18.        +<-(inform A of E's FlowSpec)
 
          V
 
19.     +<-(wait for ACCEPTS)
 
        V
 
20.  +<-(wait until HID negotiated)
 
    V
 
21.  (inform A open to E)
 
  
                Figure 12.  Addition of Another Target
+
        FindNextHops( < destination >*, TOS )
 +
            -> result, < destination, < interface, next hop,
 +
              ST-capable, MustEncapsulate >* >*
  
 +
      We hope that routing protocols will be available that propagate
 +
      additional metrics of bandwidth, delay, bit/burst error rate,
 +
      and whether a router has ST capability.  However, propagating
 +
      this information in a timely fashion is still a key research
 +
      issue.
  
CIP Working Group                                           
+
  3.8.2.        Access to Network Layer Resource Reservation
  
RFC 1190                Internet Stream Protocol            October 1990
+
      The resources required to reach the next-hops associated with
 +
      the chosen routes must be allocated.  These allocations will
 +
      generally be requested and released incrementally.  As the
 +
      next-hop elements for the routes are chosen, the network
 +
      resources between the current node and the next-hops must be
 +
      allocated.  Since the resources are not guaranteed to be
 +
      available -- a network or node further down the path might have
 +
      failed or needed resources might have been allocated since the
 +
      routing decisions where made -- some of these allocations may
 +
      have to be released, another route selected, and a new
 +
      allocation requested.
  
 +
      There are four basic interface functions needed for the network
 +
      resource allocator.  The first checks to see if the required
 +
      resources are available, returning the likelihood that an
 +
      ensuing resource allocation will succeed.  A probability of 0%
 +
      indicates the resources are not available or cannot promise to
 +
      meet the required guarantees.  Low probabilities indicate that
 +
      most of the resource has been allocated or that there is a lot
 +
      of contention for using the resource.  This call does not
 +
      actually reserve the resources:
  
         An ST agent that is already a node in the stream recognizes the
+
         ResourceProbe( requirements )
        RVLId and verifies that the Name of the stream is the same.  It
+
            -> likelihood
        then checks if the intersection of the TargetList and the
 
        targets of the established stream is empty.  If this is not the
 
        case, then the receiver responds with an ERROR-IN-REQUEST with
 
        the appropriate reason code (RouteLoop) that contains a
 
        TargetList of those targets that were duplicates;  see Section
 
        4.2.3.5 (page 106).
 
  
        For each new target in the TargetList, processing is much the
+
      Another call reserves the resources:
        same as for the original CONNECT;  see Sections 3.1.2-4 (pages
 
        19-20).  The CONNECT must be acknowledged, propagated, and
 
        network resources must be reserved.  However, it may be
 
        possible to route to the new targets using previously allocated
 
        paths or an existing multicast group.  In that case, additional
 
        resources do not need to be reserved but more next-hop(s) might
 
        have to be added to an existing multicast group.
 
  
         Nevertheless, the origin, or any intermediate ST agent that
+
         ResourceReserve( requirements )
        receives a CONNECT for an existing stream, can make a routing
+
            -> result, reservation_id
        decision that is independent of any it may have made
 
        previously.  Depending on the routing algorithm that is used,
 
        the ST agent may decide to reach the new target by way of an
 
        established branch, or it may decide to create a new branch.
 
        The fact that a new target is being added to an existing stream
 
        may result in a suboptimal overall routing for certain routing
 
        algorithms.  We take this problem to be unavoidable since it is
 
        unlikely that the stream routing can be made optimal in
 
        general, and the only way to avoid this loss of optimality is
 
        to redefine the routing of potentially the entire stream, which
 
        would be too expensive and time consuming.
 
  
 +
      The third call adjusts the resource guarantees:
  
      3.3.2.        The Origin Removing a Target
+
        ResourceAdjust( reservation_id, new requirements )
 +
            -> result
  
        The application at the origin specifies a set of targets that
+
      The final call allows the resources to be released:
        are to be removed from the stream and an appropriate reason
 
        code (ApplDisconnect).  The targets are partitioned into
 
        multiple DISCONNECT messages based on the next-hop to the
 
        individual targets.  As with CONNECT messages, an ST agent that
 
        is sending a DISCONNECT must make sure that the message fits
 
        into the MTU for the intervening network.  If the message is
 
        too large, the TargetList must be further partitioned into
 
        multiple DISCONNECT messages.
 
  
         An ST agent that receives a DISCONNECT message must acknowledge
+
         ResourceRelease( reservation_id )
        it by sending an ACK back to the previous-hop.  The DISCONNECT
+
            -> result
        must also be propagated to the relevant next-hop ST agents.
 
        Before propagating the message, however, the TargetList should
 
        be partitioned based on next-hop ST
 
  
 +
  3.8.3.        Network Layer Services Utilized
  
 +
      ST requires access to the usual network layer functions to send
 +
      and receive packets and to be informed of network status
 +
      information.  In addition, it requires functions to enable and
 +
      disable reception of multicast packets.  Such functions might
 +
      be defined as:
  
 +
        JoinLocalGroup( network level group-address )
 +
            -> result, multicast_id
  
CIP Working Group                                           
+
        LeaveLocalGroup( network level group-address )
 +
            -> result
  
RFC 1190                Internet Stream Protocol            October 1990
+
        RecvNet( SAP )
 +
            -> result, src, dst, len, BufPTR )
  
 +
        SendNet( src, dst, SAP, len, BufPTR )
 +
            -> result
  
         agent and MTU, as described above.  Note that there may be
+
         GetNotification( SAP )
        targets in the TargetList for which the ST agent has no
+
            -> result, infop
        information.  This may result from interacting DISCONNECT and
 
        REFUSE messages and should be logged and silently ignored.
 
  
        If, after deleting the specified targets, any next-hop has no
+
  3.8.4.        IP Services Utilized
        remaining targets, then those resources associated with that
 
        next-hop agent may be released. Note that network resources
 
        may not actually be released if network multicasting is being
 
        used since they may still be required for traffic to other
 
        next-hops in the multicast group.
 
  
 +
      Since ST packets might be sent or received using IP
 +
      encapsulation, IP level routines to join and leave multicast
 +
      groups are required in addition to the usual services defined
 +
      in the IP specification (see the IP specification [2] [15] and
 +
      the IP multicast specification [6] for details).
  
      Application                                        Application
+
        JoinHostGroup( IP level group-address, interface )
             Agent A            Agent 1  Agent 2          Agent B    C
+
             -> result, multicast_id
  
  1.  (close B,C ApplDisconnect)
+
        LeaveHostGroup( IP level group-address, interface )
          V
+
            -> result
  2.      +->+-+-> DISCONNECT B ----->+
+
 
  3.        | |  <RVLId=14><SVLId=4>+-+-> DISCONNECT B ------>+
+
        GET_SRCADDR( remote IP addr, TOS )
            | |  <Ref=25>          | |  <RVLId=44><SVLId=15>|
+
            -> local IP address
            | V  <RC=ApplDisconnect>| |  <Ref=120>          |
+
 
  4.        | (free A to 1 resrc.)   | V  <RC=ApplDisconnect> |
+
         SEND( src, dst, prot, TOS, TTL, BufPTR, len, Id, DF,
  5.        |                        V (free 1 to B resrc.)    |
+
              opt )
  6.        | +<- ACK <--------------+                        V
+
            -> result
  7.        | |  <RVLId=4><SVLId=14>| +<- ACK <---------------+
+
 
            | V  <Ref=25>          | |  <RVLId=15><SVLId=44>|
+
        RECV( BufPTR, prot )
  8.        | (free link 4)          V |  <Ref=120>           |
+
            -> result, src, dst, SpecDest, TOS, len, opt
  9.        |          (free link 14) V                      |
+
 
  10.        |                          (free link 15)         V
+
        GET_MAXSIZES( local, remote, TOS )
  11.        |        (inform B that stream closed ApplDisconnect)
+
            -> MMS_R, MMS_S
  12.        |                                    (free link 44)
+
 
            V
+
        ADVISE_DELIVPROB( problem, local, remote, TOS )
  13.    +<-+-+-> DISCONNECT C ---------->+
+
            -> result
  14.    |    |  <RVLId=23><SVLId=5>    +-+-> DISCONNECT C ------>+
 
          |    |  <Ref=30>                | |  <RVLId=54><SVLId=25>|
 
          |    V  <RC=ApplDisconnect>    | |  <Ref=240>          |
 
  15.    |    (keep A to 2 resrc for      | V  <RC=ApplDisconnect> |
 
  16.    |        data going to D,E)     | (free 2 to C resrc.)    |
 
          |                                V                        |
 
  17.    |    +<- ACK <-------------------+                        V
 
  18.    |    |  <RVLId=5><SVLId=23>    | +<- ACK <---------------+
 
          |    V  <Ref=30>                | |  <RVLId=25><SVLId=54>|
 
  19.    |    (keep link 5 for D,E)      V |  <Ref=240>          |
 
  20.    |          (keep link 23 for D,E) V                      |
 
  21.    |                          (free link 25)                V
 
  22.    |              (inform C that stream closed ApplDisconnect>)
 
  23.    V                                            (free link 54)
 
  24.    (inform A closed to B,C ApplDisconnect)
 
  
                  Figure 13.  Origin Removing a Target
+
        SEND_ICMP( src, dst, TOS, TTL, BufPTR, len, Id, DF, opt )
 +
            -> result
  
 +
        RECV_ICMP( BufPTR )
 +
            -> result, src, dst, len, opt
  
 +
  3.8.5.        ST Layer Services Provided
  
CIP Working Group                                           
+
      Interface to the ST layer services may be modeled using a set
 +
      of subroutine calls (but need not be implemented as such).
 +
      When the protocol is implemented as part of an operating
 +
      system, these subroutines may be used directly by a higher
 +
      level protocol processing layer.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      These subroutines might also be provided through system service
 +
      calls to provide a raw interface for use by an application.
 +
      Often, this will require further adaptation to conform with the
 +
      idiom of the particular operating system.  For example, 4.3 BSD
 +
      UNIX (TM) provides sockets, ioctls and signals for network
 +
      programming.
  
 +
      open( connect/listen, SAPBytes, local SAP, local host,
 +
            account, authentication info, < foreign host,
 +
            SAPBytes, foreign SAP, options >*, flow spec,
 +
            precedence, group name, optional parameters )
 +
          -> result, id, stream name, < foreign host,
 +
            foreign SAPBytes, foreign SAP, result, flow spec,
 +
            rname, optional parameters >*
  
        When the DISCONNECT reaches a target, the target sends an ACK
+
      Note that an open by a target in "listen mode" may cause ST to
        and notifies the application that it is no longer part of the
+
      create a state block for the stream to facilitate rendezvous.
        stream and the reason.  The application should then inform ST
 
        to terminate the stream, and ST should delete the stream from
 
        its database after performing any necessary management and
 
        accounting functions.
 
  
 +
      add( id, SAPBytes, local SAP, local host, < foreign host,
 +
          SAPBytes, foreign SAP, options >*, flow spec,
 +
          precedence, group name, optional parameters )
 +
        -> result, < foreign host, foreign SAPBytes,
 +
            foreign SAP, result,
 +
            flow spec, rname, optional parameters >*
  
       3.3.3.        A Target Deleting Itself
+
       send( id, buffer address, byte count, priority )
 +
        -> result, next send time, burst send time
  
        The application at the target may inform ST that it wants to be
+
      recv( id, buffer address, max byte count )
        removed from the stream and the appropriate reason code
+
         -> result, byte count
        (ApplDisconnect).  The agent then forms a REFUSE message with
 
         itself as the only entry in the TargetList.  The REFUSE is sent
 
        back to the origin via the previous-hop.  If a stream has
 
        multiple targets and one target leaves the stream using this
 
        REFUSE mechanism, the stream to the other targets is not
 
        affected;  the stream continues to exist.
 
  
        An ST agent that receives such a REFUSE message must
+
      recvsignal( id )
         acknowledge it by sending an ACK to the next-hop.  The target
+
         -> result, signal, info
        is deleted and, if the next-hop has no remaining targets, then
 
        the those resources associated with that next-hop agent may be
 
        released.  Note that network resources may not actually be
 
        released if network multicasting is being used since they may
 
        still be required for traffic to other next-hops in the
 
        multicast group.  The REFUSE must also be propagated back to
 
        the previous-hop ST agent.
 
  
 +
      receivecontrol( id )
 +
        -> result, id, stream name, < foreign host,
 +
            foreign SAPBytes, foreign SAP, result, flow spec,
 +
            rname, optional parameters >*
  
                Agent A         Agent 2          Agent E
+
      sendcontrol( id, flow spec, precedence, options,
 +
            < foreign host, SAPBytes, foreign SAP, options >*)
 +
         -> result, < foreign host, foreign SAPBytes,
 +
            foreign SAP, result, flow spec, rname,
 +
            optional parameters >*
  
            1.                            (close E ApplDisconnect)
+
      change( id, flow spec, precedence, options,
                                                      V
+
             < foreign host, SAPBytes, foreign SAP, options >*)
             2.                        +<- REFUSE E --+
+
        -> result, < foreign host, foreign SAPBytes,
                                      |  <RVLId=27><SVLId=74>
+
             foreign SAP, result, flow spec, rname,
                                      |  <Ref=720>
+
             optional parameters >*
                                      V  <RC=ApplDisconnect>
 
            3.                      +<-+-> ACK ------>+
 
                                    |  |  <RVLId=74><SVLId=27>
 
             4.                      V  V  <Ref=720>
 
            5.    +<-+<- REFUSE E --+  (prune allocations)
 
                  |  |  <RVLId=5><SVLId=23>
 
                  |  |  <Ref=245>
 
                  |  V  <RC=ApplDisconnect>
 
             6.    |  +-> ACK ------>+
 
                  |  |  <RVLId=23><SVLId=5>
 
                  |  V  <Ref=245>
 
            7.    V  (prune allocations)
 
            8.    (inform application closed E ApplDisconnect)
 
  
                  Figure 14.  Target Deleting Itself
+
      close( id, < foreign host, SAPBytes, foreign SAP >*,
 +
            optional parameters )
 +
        -> result
  
 +
      status( id/stream name/group name )
 +
        -> result, account, group name, protocol,
 +
            < stream name, < foreign host, SAPbytes,
 +
            foreign SAP, state, options, flow spec,
 +
            routing info, rname >*, precedence, options >*
  
CIP Working Group                                           
+
      creategroup( members* )
 +
        -> result, group name
  
RFC 1190                Internet Stream Protocol            October 1990
+
      deletegroup( group name, members* )
 +
        -> result
  
 +
                  [This page intentionally left blank.]
  
        When the REFUSE reaches the origin, the origin sends an ACK and
+
== ST Protocol Data Unit Descriptions ==
        notifies the application that the target listed in the
 
        TargetList is no longer part of the stream.  If the stream has
 
        no remaining targets, the application may choose to terminate
 
        the stream.
 
  
 +
The ST PDUs sent between ST agents consist of an ST Header
 +
ncapsulating either a higher layer PDU or an ST Control Message.
 +
Since ST operates as an extension of IP, the packet arrives at the
 +
same network service access point that IP uses to receive IP
 +
datagrams, e.g., ST would use the same ethertype (0x800) as does IP.
 +
The two types of packets are distinguished by the IP Version Number
 +
field (the first four bits of the packet);  IP currently uses a value
 +
of 4, while ST has been assigned the value 5 [18].  There is no
 +
requirement for compatibility between IP and ST packet headers beyond
 +
the first four bits.
  
      3.3.4.        Changing the FlowSpec
+
The ST Header also includes an ST Version Number, a total length
 +
field, a header checksum, and a HID, as shown in Figure 21. See
 +
Appendix 1 (page 147) for an explanation of the notation.
  
        An application may wish to change the FlowSpec of an
+
  ST is the IP Version Number assigned to identify ST packets.  The
        established stream.  To do so, it informs ST of the new
+
  value for ST is 5.
        FlowSpec and the list of targets that are to be changed.  The
 
        origin ST agent then issues one or more CHANGE messages with
 
        the new FlowSpec and sends them to the relevant next-hop
 
        agents.  CHANGE messages are structured and processed similarly
 
        to CONNECT messages.  A next-hop agent that is an intermediate
 
        agent and receives a CHANGE message similarly determines if it
 
        can implement the new FlowSpec along the hop to each of its
 
        next-hop agents, and if so, it propagates the CHANGE messages
 
        along the established paths.  If this process succeeds, the
 
        CHANGE messages will eventually reach the targets, which will
 
        each respond with an ACCEPT message that is propagated back to
 
        the origin.
 
  
        Note that since a CHANGE may be sent containing a FlowSpec with
+
  Ver is the ST Version Number.  This document defines ST Version 2.
        a range of permissible values for bandwidth, delay, and/or
 
        error rate, and the actual values returned in the ACCEPTs may
 
        differ, then another CHANGE may be required to release excess
 
        resources along some of the paths.
 
  
 +
  Pri is the priority of the packet.  It is used in data packets to
 +
  indicate those packets to drop if a stream is exceeding its
 +
  allocation.  Zero is the lowest priority and 7 the highest.
  
   3.4.       Stream Tear Down
+
   T (bit 11) is used to indicate that a Timestamp is present
 +
  following the ST Header but before any next higher layer protocol
 +
  data. The Timestamp is not permitted on ST Control Messages
 +
  (which may use the OriginTimestamp option).
  
      A stream is usually terminated by the origin when it has no
+
  Bits 12 through 15 are spares and should be set to 0.
      further data to send, but may also be partially torn down by the
 
      individual targets.  These cases will not be further discussed
 
      since they have already been described in Sections 3.3.2-3 (pages
 
      33-35).
 
  
      A stream is also torn down if the application should terminate
+
0                  1                  2                  3
      abnormally. Processing in this case is identical to the previous
+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      descriptions except that the appropriate reason code is different
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      (ApplAbort).
+
| ST=5 | Ver=2 | Pri |T| Bits  |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|              HID              |        HeaderChecksum        |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
      When all targets have left a stream, the origin notifies the
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      application of that fact, and the application then is responsible
+
|                                                              |
      for terminating the stream.  Note, however, that the application
+
+-                          Timestamp                          -+
      may decide to add a target(s) to the stream instead of terminating
+
|                                                              |
      it.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
                      Figure 21.  ST Header
  
 +
  TotalBytes is the length, in bytes, of the entire ST packet, it
 +
  includes the ST Header and optional Timestamp but does not include
 +
  any local network headers or trailers.  In general, all length
 +
  fields in the ST Protocol are in units of bytes.
  
 +
  HID is the 16-bit hop-by-hop stream identifier.  It is an
 +
  abbreviation for the Name of the stream and is used both to reduce
 +
  the packet header length and, by the receiver of the data packet,
 +
  to make the forwarding function more efficient.  Control Messages
 +
  have a HID value of zero.  HIDs are negotiated by the next-hop and
 +
  previous-hop agents to make the abbreviation unique.  It is used
 +
  here in the ST Header and in various Control Messages.  HID values
 +
  1-3 are reserved for future use.
  
 +
  HeaderChecksum covers only the ST Header and Timestamp, if
 +
  present.  The ST Protocol uses 16-bit checksums here in the ST
 +
  Header and in each Control Message.  The standard Internet
 +
  checksum algorithm is used:  "The checksum field is the 16-bit
 +
  one's complement of the one's complement sum of all 16-bit words
 +
  in the header.  For purposes of computing the checksum, the value
 +
  of the checksum field is zero."  See [1] [12] [15] for suggestions
 +
  for efficient checksum algorithms.
  
CIP Working Group                                           
+
  Timestamp is an optional timestamp inserted into data packets by
 +
  the origin.  It is only present when the T bit, described above,
 +
  is set (1).  Its use is negotiated at connection setup time;  see
 +
  Sections 4.2.3.5 (page 108) and 4.2.3.1 (page 100).  The Timestamp
 +
  has the NTP format;  see [13].
  
RFC 1190                Internet Stream Protocol            October 1990
+
4.1.      Data Packets
  
 +
  ST packets whose HID is not zero to three are user data packets.
 +
  Their interpretation is a matter for the higher layer protocols
 +
  and consequently is not specified here.  The data packets are not
 +
  protected by an ST checksum and will be delivered to the higher
 +
  layer protocol even with errors.
  
   3.5.       Exceptional Cases
+
   ST agents will not pass data packets over a new hop whose setup is
 +
  not complete, i.e., a HID must have been negotiated and either an
 +
  ACCEPT or REFUSE has been received for all targets specified in
 +
  the CONNECT.
  
      The previous descriptions covered the simple cases where
+
4.2.      ST Control Message Protocol Descriptions
      everything worked. We now discuss what happens when things do not
 
      succeed. Included are situations where messages are lost, the
 
       requested resources are not available, the routing fails or is
 
      inconsistent.
 
  
      In order for the ST Control Message Protocol to be reliable over
+
  ST Control Messages are between a previous-hop agent and its
      an unreliable internetwork, the problems of corruption,
+
  next-hop agent(s) using a HID of zeroThe control protocol
      duplication, loss, and ordering must be addressed.  Corruption is
+
  follows a request-response model with all requests expecting
      handled through use of checksumming, as described in Section 4
+
  responsesRetransmission after timeout (see Section 3.7.6 (page
      (page 76).  Duplication of control messages is detected by
+
  66)) is used to allow for lost or ignored messagesControl
      assigning a transaction number (Reference) to each control
+
  messages do not extend across packet boundaries; if a control
      message;  duplicates are discardedLoss is detected using a
+
  message is too large for the MTU of a hop, its information
      timeout at the sender;  messages that are not acknowledged before
+
  (usually a TargetList) is partitioned and a control message per
      the timeout expires are retransmitted;  see Section 3.7.6 (page
+
  partition is sentAll control messages have the following
      66).  If a message is not acknowledged after a few retransmissions
+
  format:
      a fault is reported.  The protocol does not have significant
 
      ordering constraintsHowever, minor sequencing of control
 
      messages for a stream is facilitated by the requirement that the
 
      Reference numbers be monotonically increasing;  see Section 4.2
 
      (page 78).
 
  
 +
      OpCode identifies the type of control message.  Each is
 +
      described in detail in following sections.
  
       3.5.1.       Setup Failure due to CONNECT Timeout
+
       Options is used to convey OpCode-specific variations for a
 +
      control message.
  
        If a response (an ERROR-IN-REQUEST, an ACK, a HID-REJECT, or a
+
      TotalBytes is the length of the control message, in bytes,
        HID-APPROVE) has not been received within time ToConnect, the
+
      including all OpCode specific fields and optional parameters.
        ST agent should retransmit the CONNECT message.  If no response
+
      The value is always divisible by four.
        has been received within NConnect retransmissions, then a fault
 
        occurs and a REFUSE message with the appropriate reason code
 
        (RetransTimeout) is sent back in the direction of the origin,
 
        and, in place of the CONNECT, a DISCONNECT is sent to the
 
        next-hop (in case the response to the CONNECT is the message
 
        that was lost).  The agent will expect an ACK for both the
 
        REFUSE and the DISCONNECT messages. If it does not receive an
 
        ACK after retransmission time ToRefuse and ToDisconnect
 
        respectively, it will resend the REFUSE/DISCONNECT message.  If
 
        it does not receive ACKs after sending NRefuse/ NDisconnect
 
        consecutive REFUSE/DISCONNECT messages, then it simply gives up
 
        trying.
 
  
 +
      RVLId is used to convey the Virtual Link Identifier of the
 +
      receiver of the control message, when known, or zero in the
 +
      case of an initial CONNECT or diagnostic message.  The RVLId is
 +
      intended to permit efficient dispatch to the portion of a
 +
      stream's state machine containing information about a specific
 +
      operation in progress over the link.  RVLId values 1-3 are
 +
      reserved; see Sections 3 (page 17) and 3.7.1.2 (page 49).
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|    OpCode    |    Options    |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |                              :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                            -+
 +
:                      OpCode Specific Data                    :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
              Figure 22.  ST Control Message Format
  
 +
      SVLId is used to convey the Virtual Link Identifier of the
 +
      sender of the control message.  Except for ERROR-IN-REQUEST and
 +
      diagnostic messages, it must never be zero.  SVLId values 1-3
 +
      are reserved; see Sections 3 (page 17) and 3.7.1.2 (page 49).
  
 +
      Reference is a transaction number.  Each sender of a request
 +
      control message assigns a Reference number to the message that
 +
      is unique with respect to the stream.  The Reference number is
 +
      used by the receiver to detect and discard duplicates.  Each
 +
      acknowledgment carries the Reference number of the request
 +
      being acknowledged.  Reference zero is never used, and
 +
      Reference numbers are assumed to be monotonically increasing
 +
      with wraparound so that the older-than and more-recent-than
 +
      relations are well defined.
  
 +
      LnkReference contains the Reference field of the request
 +
      control message that caused this request control message to be
 +
      created.  It is used in situations where a single request leads
 +
      to multiple "responses".  Examples are CONNECT and CHANGE
 +
      messages that must be acknowledged hop-by-hop and will also
 +
      lead to an ACCEPT or REFUSE from each target in the TargetList.
  
 +
      SenderIPAddress is the 32-bit IP address of the network
 +
      interface that the ST agent used to send the control message.
 +
      This value changes each time the packet is forwarded by an ST
 +
      agent (hop-by-hop).
  
 +
      Checksum is the checksum of the control message.  Because the
 +
      control messages are sent in packets that may be delivered with
 +
      bits in error, each control message must be checked before it
 +
      is acted upon;  see Section 4 (page 76).
  
 +
      OpCode Specific Data contains any additional information that
 +
      is associated with the control message.  It depends on the
 +
      specific control message and is explained further below.  In
 +
      some response control messages, fields of zero are included to
 +
      allow the format to match that of the corresponding request
 +
      message.  The OpCode Specific Data may also contain any of the
 +
      optional Parameters defined in Section 4.2.2 (page 80).
  
 +
  4.2.1.        ST Control Messages
  
 +
      The CONNECT and CHANGE messages are used to establish or modify
 +
      branches in the stream.  They propagate in the direction from
 +
      the origin toward the targets.  They are end-to-end messages
 +
      created by the origin.  They propagate all the way to the
 +
      targets, and require ERROR-IN-REQUEST, ACK, HID-REJECT, HID-
 +
      APPROVE, ACCEPT, or REFUSE messages in response.  The CONNECT
 +
      message is the stream setup message.  The CHANGE message is
 +
      used to change the characteristics of an established stream.
 +
      The CONNECT message is also used to add one or more targets to
 +
      an existing stream and during recovery of a broken stream.
 +
      Both messages have a TargetList parameter and are processed
 +
      similarly.
  
CIP Working Group                                           
+
      The DISCONNECT message is used to tear down streams or parts of
 +
      streams.  It propagates in the direction from the origin toward
 +
      the targets.  It is either used as an end-to-end message
 +
      generated by the origin that is used to completely tear down a
 +
      stream, or is generated by an intermediate ST agent that
 +
      preempts a stream or detects the failure of its previous-hop
 +
      agent or network in the stream.  In the latter case, it is used
 +
      to tear down the part of the stream from the failure to the
 +
      targets, thus the message propagates all the way to the
 +
      targets.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      The REFUSE message is sent by a target to refuse to join or
 +
      remove itself from a stream;  in these cases, it is an end-to-
 +
      end message.  An intermediate ST agent issues a REFUSE if it
 +
      cannot find a route to a target, can only find a route to a
 +
      target through the previous-hop, preempts a stream, or detects
 +
      a failure in a next-hop ST agent or network.  In all cases a
 +
      REFUSE propagates in the direction toward the origin.
  
 +
      The ACCEPT message is an end-to-end message generated by a
 +
      target and is used to signify the successful completion of the
 +
      setup of a stream or part of a stream, or the change of the
 +
      FlowSpec.  There are no other messages that are similar to it.
  
          Sending Agent              Receiving Agent
+
      The following sections contain descriptions of common fields
 +
      and parameters, followed by descriptions of the individual
 +
      control messages, both listed in alphabetical order.  A brief
 +
      description of the use of the control message is given.  The
 +
      packet format is shown graphically.
  
    1.   ->+----> CONNECT X ------>//// (message lost or garbled)
+
  4.2.2.       Common SCMP Elements
          |      <RVLId=0><SVLId=99>
 
          V      <Ref=1278><HID=1234>
 
    2. (timeout)
 
          V
 
    3.    +----> CONNECT X ------------>+
 
    4.    |      <RVLId=0><SVLId=99>    +----> CONNECT X ----------->+
 
          |      <Ref=1278><HID=1234>  V      <RVLId=0><SVLId=1010> |
 
    5.    | //<- HID-APPROVE <----------+      <Ref=6666><HID=6666>  V
 
    6.    |      <RVLId=99><SVLId=88>      +<- HID-APPROVE <---------+
 
          V      <Ref=1278><HID=1234>          <RVLId=1010><SVLId=1111>
 
    7. (timeout)                                <Ref=6666><HID=6666>
 
          V
 
    8.    +----> CONNECT X ------------>+
 
                  <RVLId=0><SVLId=99>    |
 
                  <Ref=1278><HID=1234>  V
 
    9.     +<-+<- HID-APPROVE <----------+
 
          |      <RVLId=99><SVLId=88>
 
          V      <Ref=1278><HID=1234>
 
    (cancel timer)
 
  
          Figure 15CONNECT Retransmission after a Timeout
+
      Several fields and parameters (referred to generically as
 +
      "elements") are common to two or more PDUsThey are described
 +
      in detail here instead of repeating their description several
 +
      times.  In many cases, the presence of a parameter is optional.
 +
      To permit the parameters to be easily defined and parsed, each
 +
      is identified with a PCode byte that is followed by a PBytes
 +
      byte indicating the length of the parameter in bytes (including
 +
      the PCode, PByte, and any padding bytes).  If the length of the
 +
      information is not a multiple of 4 bytes, the parameter is
 +
      padded with one to three zero (0) bytes.  PBytes is thus always
 +
      a multiple of four.  Parameters can be present in any order.
  
 +
      4.2.2.1.        DetectorIPAddress
  
      3.5.2.       Problems due to Routing Inconsistency
+
        Several control messages contain the DetectorIPAddress
 +
        field. It is used to identify the agent that caused the
 +
        first instance of the message to be generated, i.e., before
 +
        it was propagated. It is copied from the received message
 +
        into the copy of the message that is to be propagated to a
 +
        previous-hop or next-hop.  It use is primarily diagnostic.
  
        When an intermediate agent receives a CONNECT, it selects the
+
      4.2.2.2.         ErroredPDU
        next-hop agents based on the TargetList and the networks to
 
        which it is connected. If the resulting next-hop to any of the
 
        targets is across the same network from which it received the
 
        CONNECT (but not the previous-hop itself), there may be a
 
        routing problem. However, the routing algorithm at the
 
        previous-hop may be optimizing differently than the local
 
        algorithm would in the same situation. Since the local ST
 
        agent cannot distinguish the two cases, it should permit the
 
        setup but send back to the previous-hop agent an informative
 
        NOTIFY message with the appropriate reason code (RouteBack),
 
        pertinent TargetList, and in the NextHopIPAddress element the
 
        address of the next-hop ST agent returned by its routing
 
        algorithm.
 
  
         The agent that receives such a NOTIFY should ACK itIf the
+
         The ErroredPDU parameter (PCode = 1) is used for diagnostic
         agent is using an algorithm that would produce such behavior,
+
        purposes to encapsulate a received ST PDU that contained an
        no further action is taken;  if not, the agent should send a
+
        errorIt may be included in the ERROR-IN-REQUEST, ERROR-
         DISCONNECT to the next-hop agent to correct the problem.
+
         IN-RESPONSE, or REFUSE messages.  It use is primarily
 +
         diagnostic.
  
        Alternatively, if the next-hop returned by the routing function
+
            PDUBytes indicates how many bytes of the PDUInError are
        is in fact the previous-hop, a routing inconsistency has been
+
            actually present.
        detected. In this case, a REFUSE is sent back to
 
  
 +
            ErrorOffset contains the number of bytes into the errored
 +
            PDU to the field containing the error.  At least as much
 +
            of the PDU in error must be included to
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  PCode = 1  |    PBytes    |  PDUBytes    |  ErrorOffset  |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                          PDUInError          :    Padding    |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
CIP Working Group                                           
+
                      Figure 23.  ErroredPDU
  
RFC 1190                Internet Stream Protocol            October 1990
+
            include the field or parameter identified by ErrorOffset;
 +
            an ErrorOffset of zero would imply a problem with the IP
 +
            Version Number or ST Version Number fields.
  
 +
            PDUInError is the PDU in error, beginning with the ST
 +
            Header.
  
        the previous-hop agent containing an appropriate reason code
+
      4.2.2.3.         FlowSpec & RFlowSpec
        (RouteInconsist), pertinent TargetList, and in the
 
        NextHopIPAddress element the address of the previous-hop. When
 
        the previous-hop receives the REFUSE, it will recompute the
 
        next-hop for the affected targets. If there is a difference in
 
        the routing databases in the two agents, they may exchange
 
        CONNECT and REFUSE messages again. Since such routing errors
 
        in the internet are assumed to be temporary, the situation
 
        should eventually stabilize.
 
  
 +
        The FlowSpec is used to convey stream service requirements
 +
        end-to-end.  We expect that other versions of FlowSpec will
 +
        be needed in the future, which may or may not be subsets or
 +
        supersets of the version described here.  PBytes will allow
 +
        new constraints to be added to the end without having to
 +
        simultaneously update all implementations in the field.
 +
        Implementations are expected to be able to process in a
 +
        graceful manner a Version 4 (or higher) structure that has
 +
        more elements than shown here.
  
      3.5.3.       Setup Failure due to a Routing Failure
+
        The FlowSpec parameter (PCode = 2) is used in several
 +
        messages to convey the FlowSpec.
  
         It is possible for an agent to receive a CONNECT message that
+
0                  1                  2                  3
         contains a known Name, but from an agent other than the
+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        previous-hop agent of the stream with that Name.  This may be:
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|    PCode    |    PBytes    |  Version = 3  |      0      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  DutyFactor  |  ErrorRate  |  Precedence  |  Reliability  |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Tradeoffs          |        RecoveryTimeout        |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          LimitOnCost          |        LimitOnDelay         |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|        LimitOnPDUBytes        |        LimitOnPDURate        |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        MinBytesXRate                        |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        AccdMeanDelay                        |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      AccdDelayVariance                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|         DesPDUBytes          |          DesPDURate          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
          1 that two branches of the tree forming the stream have
+
                Figure 24. FlowSpec & RFlowSpec
            joined back together,
 
  
          2  a deliberate source routing loop,
+
        The RFlowSpec parameter (PCode = 12) is used in conjunction
 +
        with the FDx option to convey the FlowSpec that is to be
 +
        used in the reverse direction.
  
          3  the result of an attempted recovery of a partially
+
            Version identifies the version of the FlowSpec.  Version
            failed stream, or
+
            3 is defined here.
  
          4 an erroneous routing loop.
+
            DutyFactor is the estimated proportion of the time that
 +
            the requested bandwidth will actually be in use. Zero is
 +
            taken to represent 256 and signify a duty factor of 1.
 +
            Other values are to be divided by 256 to yield the duty
 +
            factor.
  
        The TargetList is used to distinguish the cases 1 and 2 (see
+
            ErrorRate expresses the error rate as the negative
        also Section 4.2.3.5 (page 107)) by comparing each newly
+
            exponent of 10 in the error rate. One (1) represents a
        received target with those of the previously existing stream:
+
            bit error rate of 0.1 and 10 represents 0.0000000001.
  
          o if the IP address of the targets differ, it is case 1;
+
            Precedence is the precedence of the connection being
 +
            established. Zero represents the lowest precedence.
 +
            Note that non-zero values of this parameter should be
 +
            subject to authentication and authorization checks, which
 +
            are not specified here.  In general, the distinction
 +
            between precedence and priority is that precedence
 +
            specifies streams that are permitted to take previously
 +
            committed resources from another stream, while priority
 +
            identifies those PDUs that a stream is most willing to
 +
            have dropped when the stream exceeds its guaranteed
 +
            limits.
  
          o if the IP address of the targets match but the source
+
            Reliability is modified by each intervening ST agent as a
            route(s) are different, it is case 2;
+
            measure of the probability that a given offered data
 +
            packet will be forwarded and not dropped. Zero is taken
 +
            to represent 256 and signify a probability of 1.  Other
 +
            values are to be divided by 256 to yield the probability.
  
          o if the target (including any source route) matches a
+
            Tradeoffs is incompletely defined at this time. Bits
            target (including any source route) in the existing
+
            currently specified are as follows:
            stream, it may be case 3 or 4.
 
  
        It is expected that the joining of branches will become more
+
              The most significant bit in the field, bit 0 in the
        common as routing decisions are based on policy issues and not
+
              Figure 24, when one (1) means that each ST agent must
        just simple connectivity.  Unfortunately, there is no good way
+
              "implement" all constraints in the FlowSpec even if
        to merge the two parts of the stream back into a single stream.
+
              they are not shown in the figure, e.g., when the
        They must be treated independently with respect to processing
+
              FlowSpec has been extendedWhen zero (0), unknown
        in the agent.  In particular, a separate state machine is
+
              constraints may be ignored.
        required, the Virtual Link Identifiers and HIDs from the
 
        previous-hops and to the next-hops must be different, and
 
        duplicate resources must be reserved in both the agent and in
 
        any next-hop networksProcessing is the same for a deliberate
 
        source routing loop.
 
  
 +
              The second most significant bit in the field, bit 1,
 +
              when one (1) means that one or more constraints are
 +
              unknown and have been ignored.  When zero (0), all
 +
              constraints are known and have been processed.
  
 +
              The third most significant bit in the field, bit 2, is
 +
              used for RevChrg;  see Section 3.6.5 (page 46).
  
CIP Working Group                                           
+
              Other bits are currently unspecified, and should be
 +
              set to zero (0) by the origin ST agent and not changed
 +
              by other agents unless those agents know their
 +
              meaning.
  
RFC 1190                Internet Stream Protocol            October 1990
+
            RecoveryTimeout specifies the nominal number of
 +
            milliseconds that the application is willing to wait for
 +
            a failed system component to be detected and any
 +
            corrective action to be taken.
  
 +
            LimitOnCost specifies the maximum cost that the origin is
 +
            willing to expend.  A value of zero indicates that the
 +
            application is not willing to incur any direct charges
 +
            for the resources used by the stream.  The meaning of
 +
            non-zero values is left for further study.
  
        The remaining cases requiring recovery, a partially failed
+
            LimitOnDelay specifies the maximum end-to-end delay, in
        stream and an erroneous routing loop, are not easily
+
            milliseconds, that can be tolerated by the origin.
        distinguishable.  In attempting recovery of a failed stream, an
 
        agent may issue new CONNECT messages to the affected targets;
 
        for a full explanation see also Section 3.7.2 (page 51),
 
        Failure Recovery.  Such a CONNECT may reach an agent downstream
 
        of the failure before that agent has received a DISCONNECT from
 
        the neighborhood of the failure.  Until that agent receives the
 
        DISCONNECT, it cannot distinguish between a failure recovery
 
        and an erroneous routing loop.  That agent must therefore
 
        respond to the CONNECT with a REFUSE message with the affected
 
        targets specified in the TargetList and an appropriate reason
 
        code (StreamExists).
 
  
        The agent immediately preceding that point, i.e., the latest
+
            LimitOnPDUBytes is the smallest packet size, in terms of
        agent to send the CONNECT message, will receive the REFUSE
+
            ST-user data bytes, that can be tolerated by the origin.
        message.  It must release any resources reserved exclusively
 
        for traffic to the listed targets.  If this agent was not the
 
        one attempting the stream recovery, then it cannot distinguish
 
        between a failure recovery and an erroneous routing loop.  It
 
        should repeat the CONNECT after a ToConnect timeout.  If after
 
        NConnect retransmissions it continues to receive REFUSE
 
        messages, it should propagate the REFUSE message toward the
 
        origin, with the TargetList that specifies the affected
 
        targets, but with a different error code (RouteLoop).
 
  
        The REFUSE message with this error code (RouteLoop) is
+
            LimitOnPDURate is the lowest packet rate that can be
        propagated by each ST agent without retransmitting any CONNECT
+
            tolerated by the origin, expressed as tenths of a packet
        messages.  At each agent, it causes any resources reserved
+
            per second.
        exclusively for the listed targets to be released.  The REFUSE
 
        will be propagated to the origin in the case of an erroneous
 
        routing loop.  In the case of stream recovery, it will be
 
        propagated to the ST agent that is attempting the recovery,
 
        which may be an intermediate agent or the origin itself.  In
 
        the case of a stream recovery, the agent attempting the
 
        recovery may issue new CONNECT messages to the same or to
 
        different next-hops.
 
  
        If an agent receives both a REFUSE message and a DISCONNECT
+
            MinBytesXRate is the minimum bandwidth that can be
        message with a target in common then it can release the
+
            tolerated by the origin, expressed as a product of bytes
        relevant resources and propagate neither the REFUSE nor the
+
            and tenths of a packet per second.
        DISCONNECT (however, we feel that it is unlikely that most
 
        implementations will be able to detect this situation).
 
  
        If the origin receives such a REFUSE message, it should attempt
+
            AccdMeanDelay is modified by each intervening ST agent.
        to send a new CONNECT to all the affected targetsSince
+
            This provides a means of reporting the total expected
        routing errors in an internet are assumed to be temporary, the
+
            delay, in milliseconds, for a data packetNote that it
        new CONNECTs will eventually find acceptable routes to the
+
            is implicitly assumed that the requested mean delay is
        targets, if one exists. If no further routes exist after
+
            zero and there is no limit on the mean delay, so there
        NRetryRoute tries, the application should be
+
            are no parameters to specify these explicitly.
  
 +
            AccdDelayVariance is also modified by each intervening ST
 +
            agent as a measure, in milliseconds squared, of the
 +
            packet dispersion.  This quantity can be used by the
 +
            target or origin in determining whether the resulting
 +
            stream has an adequate quality of service to support the
 +
            application.  Note that it is implicitly assumed that the
 +
            requested delay variance is zero and there is no limit on
 +
            the delay variance, so there are no parameters to specify
 +
            these explicitly.
  
 +
            DesPDUBytes is the desired PDU size in bytes.  This is
 +
            not necessarily the same as the minimum necessary PDU
 +
            size.  This value may be made smaller by intervening ST
 +
            agents so long as it is not made smaller than
 +
            LimitOnPDUBytes.  The *PDUBytes limits measure the size
 +
            of the PDUs of next-higher protocol layer, i.e., the user
 +
            information contained in a data packet.  An ST agent must
 +
            account for both the ST Header (including possible IP
 +
            encapsulation) and any local network headers and trailers
 +
            when comparing a network's MTU with *PDUBytes.  In an
 +
            ACCEPT message, the value of this field will be no larger
 +
            than the MTU of the path to the specified target.
  
 +
            DesPDURate is the requested PDU rate, expressed as tenths
 +
            of a packet per second.  This value may be made smaller
 +
            by intervening ST agents so long as it is not made
 +
            smaller than LimitOnPDURate.
  
CIP Working Group                                           
+
            It is expected that the next parameter to be added to the
 +
            FlowSpec will be a Burst Descriptor.  This parameter will
 +
            describe the burstiness of the offered traffic.  For
 +
            example, this may include the simple average rate, peak
 +
            rate and variance values, or more complete descriptions
 +
            that characterize the distribution of expected burst
 +
            rates and their expected duration.  The nature of the
 +
            algorithms that deal with the traffic's burstiness and
 +
            the information that needs to be described by this
 +
            parameter will be subjects of further experimentation.
 +
            It is expected that a new FlowSpec with Version = 4 will
 +
            be defined that looks like Version 3 but has a Burst
 +
            Descriptor parameter appended to the end.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      4.2.2.4.        FreeHIDs
  
 +
        The FreeHIDs parameter (PCode = 3) is used to communicate to
 +
        the previous-hop suggestions for a HID.  It consists of
 +
        BaseHID and FreeHIDBitMask fields.  Experiments will
 +
        determine how long the mask should be for practical use of
 +
        this parameter.  The parameter (if implemented) should be
 +
        included in all HID-REJECTs, and in HID-APPROVEs that are
 +
        linked to a multicast CONNECT, e.g., one containing the
 +
        MulticastAddress parameter.
  
        informed so that it may take whatever action it deems
+
            BaseHID was the suggested value in a HID-CHANGE or
        necessary.
+
            CONNECT.  BaseHID is chosen to be the suggested HID value
 +
            to insure that the masks from multiple FreeHIDs
 +
            parameters will overlap.
  
 +
            FreeHIDBitMask identifies available HID values as
 +
            follows.  Bit 0 in the FreeHIDBitMask corresponds to a
  
      3.5.4.       Problems in Reserving Resources
+
            HID with a value equal to BaseHID with the 5 least
 +
            significant bits set to zero, bit 1 corresponds to that
 +
            value + 1, etc. This alignment of the mask on a 32-bit
 +
            boundary is used so that masks from several FreeHIDs
 +
            parameters might more easily be combined using a bit-wise
 +
            AND function to find a free HID.
  
        If the network or ST agent resources are not available, an ST
+
0                  1                  2                  3
        agent may preempt one or more streams that have lower
+
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        precedence than the one being created. When it breaks a lower
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        precedence stream, it must issue REFUSE and DISCONNECT messages
+
|  PCode = 3  |    4+4*N    |            BaseHID            |
        as described in Sections 4.2.3.15 (page 122) and 4.2.3.6 (page
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        110).  If there are no streams of lower precedence, or if
+
:                        FreeHIDBitMask                        :
        preempting them would not provide sufficient resources, then
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        the stream cannot be accepted by the ST agent.
 
  
        If an intermediate agent detects that it cannot allocate the
+
                      Figure 25FreeHIDs
        necessary resources, then it sends a REFUSE that contains an
 
        appropriate reason code (CantGetResrc) and the pertinent
 
        TargetList to the previous-hop ST agentFor further study are
 
        issues of reporting what resources are available, whether the
 
        resource shortage is permanent or transitory, and in the latter
 
        case, an estimate of how long before the requested resources
 
        might be available.
 
  
 +
      4.2.2.5.        Group & RGroup
  
      3.5.5.       Setup Failure due to ACCEPT Timeout
+
        The Group parameter (PCode = 4) is an optional argument
 +
        used only for the creation of a stream. This parameter
 +
        contains a GroupName; the GroupName may be the same as the
 +
        Name of one of the group's streams. In addition, there
 +
        may be some number of <SubGroupId, Relation> tuples that
 +
        describe the meaning of the grouping and the relation
 +
        between the members of the group.  The forms of grouping
 +
        are for further study.
  
         An ST agent that propagates an ACCEPT message backward toward
+
         The RGroup parameter (PCode = 13) is an optional argument
         the origin expects an ACK from the previous-hop.  If it does
+
         used only for the creation of a stream in the reverse
        not receive an ACK within a timeout, called ToAccept, it will
+
         direction that is a member of a Group; see the FDx
        retransmit the ACCEPT.  If it does not receive an ACK after
+
         option, Section 3.6.3 (page 45).  This parameter has the
         sending a number, called NAccept, of ACCEPT messages, then it
+
         same format as the Group parameter.
        will replace the ACCEPT with a REFUSE, and will send a
 
        DISCONNECT in the direction toward the target. Both the REFUSE
 
         and DISCONNECT will identify the affected target(s) and specify
 
        an appropriate reason code (AcceptTimeout).  Both are also
 
        retransmitted until ACKed with timeout ToRefuse/ ToDisconnect
 
        and retransmit count NRefuse/NDisconnect.  If they are not
 
        ACKed, the agent simply gives up, letting the failure detection
 
        mechanism described in Section 3.7.1 (page 48) take care of any
 
         cleanup.
 
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|    PCode    |    12+4*N    |                              !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                            -+
 +
!                          GroupName                          !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          SubGroupId          |            Relation          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:              ...              :              ...              :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          SubGroupId          |            Relation          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
                    Figure 26.  Group & RGroup
  
 +
        A GroupName has the same format as a Name;  see Figure 29.
  
 +
      4.2.2.6.        HID & RHID
  
 +
        The HID parameter (PCode = 5) is used in the NOTIFY message
 +
        when the notification is related to a HID, and possibly in
 +
        the STATUS-RESPONSE message to convey additional HIDs that
 +
        are valid for a stream when there are more than one.  It
 +
        consists of the PCode and PBytes bytes prepended to a HID;
 +
        HIDs were described in Section 4 (page 76).
  
 +
        The RHID parameter (PCode = 14) is used in conjunction with
 +
        the FDx option to convey the HID that is to be used in the
 +
        reverse direction.  It consists of the PCode and PBytes
 +
        bytes prepended to a HID.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|    PCode    |      4      |              HID              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
                      Figure 27.  HID & RHID
  
 +
      4.2.2.7.        MulticastAddress
  
 +
        The MulticastAddress parameter (PCode = 6) is an optional
 +
        parameter that is used, when setting up a network level
 +
        multicast group, to communicate an IP and/or local network
 +
        multicast address to the next-hop agents that should become
 +
        members of the group.
  
 +
            LocalNetBytes is the length of the Local Net Multicast
 +
            Address.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  PCode = 6  |    PBytes    | LocalNetBytes |      0      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                    IP Multicast Address                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                  Local Net Multicast Address  :    Padding    |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
CIP Working Group                                           
+
                  Figure 28.  MulticastAddress
  
RFC 1190                Internet Stream Protocol            October 1990
+
            IP Multicast Address is described in [6].  This field is
 +
            zero (0) if no IP multicast address is known or is
 +
            applicable.  The block of addresses 224.1.0.0 -
 +
            224.1.255.255 has been allocated for use by ST.
  
 +
            Local Net Multicast Address is the multicast address to
 +
            be used on the local network.  It corresponds to the IP
 +
            Multicast Address when the latter is non-zero.
  
       3.5.6.       Problems Caused by CHANGE Messages
+
       4.2.2.8.        Name & RName
  
         An application must exercise care when changing a FlowSpec to
+
         Each stream is uniquely (i.e., globally) identified by a
         prevent a failureA CHANGE might fail for two reasons.  The
+
        Name.  A Name is created by the origin host ST agent and is
         request may be for a larger amount of network resources when
+
        composed of 1) a 16-bit number chosen to make the Name
         those resources are not available; this failure may be
+
        unique within the agent, 2) the IP address of the origin ST
         prevented by requiring that the current level of service be
+
         agent, and 3) a 32-bit timestampIf the origin has
         contained within the ranges of the FlowSpec in the CHANGE.
+
        multiple IP addresses, then any that can be used to reach
 +
        target may be used in the Name.  The intent is that the
 +
         <Unique ID, IP Address> tuple be unique for the lifetime of
 +
         the stream. It is suggested that to increase robustness a
 +
         Unique ID value not be reused for a period of time on the
 +
         order of 5 minutes.
  
         Alternatively, the local network might require all the former
+
         The Timestamp is included both to make the Name unique over
         resources to be released before the new ones are requested and,
+
        long intervals (e.g., forever) for purposes of network
         due to unlucky timing, an unrelated request for network
+
         management and accounting/billing, and to protect against
         resources might be processed between the time the resources are
+
         failure of an ST agent that causes knowledge of active
        released and the time the new resources are requested, so that
+
         Unique IDs to be lost.  The assumption is that all ST agents
         the former resources are no longer availableThere is not
+
         have access to some "clock"If this is not the case, the
         much that an application or ST can do to prevent such failures.
+
        agent should have access to some form of non-volatile memory
 +
         in which it can store some number that at least gets
 +
        incremented per restart.
  
         If the attempt to change the FlowSpec fails then the ST agent
+
         The Name parameter (PCode = 7) is used in most control
        where the failure occurs must intentionally break the stream
+
         messages to identify a stream.
        and invoke the stream recovery mechanism using REFUSE and
 
        DISCONNECT messages;  see Section 3.7.2 (page 51).  Note that
 
         the reserved resources after the failure of a CHANGE may not be
 
        the same as before, i.e., the CHANGE may have been partially
 
        completed.  The application is responsible for any cleanup
 
        (another CHANGE).
 
  
 +
        The RName parameter (PCode = 15) is used in conjunction with
 +
        the FDx option to convey the Name of the reverse stream in
 +
        an ACCEPT message.
  
      3.5.7.        Notification of Changes Forced by Failures
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|    PCode    |      12      |            Unique ID          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                          IP Address                          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                          Timestamp                          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        NOTIFY is issued by a an ST Agent to inform upsteam agents and
+
                    Figure 29Name & RName
        the origin that resource allocation changes have occurred after
 
        a stream was establishedThese changes occur when network
 
        components fail and when competing streams preempt resources
 
        previously reserved by a lower precedence stream.  We also
 
        anticipate that NOTIFY can be used in the future when
 
        additional resources become available, as is the case when
 
        network components recover or when higher precedence streams
 
        are deleted.
 
  
        NOTIFY is also used to inform upstream agents that a routing
+
      4.2.2.9.         NextHopIPAddress
        anomaly has occurred. Such an example was cited in Section
 
        3.5.2 (page 38), where an agent notices that the next-hop agent
 
        is on the same network as the previous-hop agent;  the anomaly
 
        is that the previous-hop should have connected directly to the
 
        next-hop without using an intermediate agent.  Delays in
 
        propagating host status and routing information can cause such
 
        anomalies to occur. NOTIFY allows ST to correct automatically
 
        such mistakes.
 
  
         NOTIFY reports a FlowSpec that reflects that revised guarantee
+
         The NextHopIPAddress parameter (PCode = 8) is an optional
         that can be promised to the stream. NOTIFY also
+
        parameter of NOTIFY (RouteBack) or REFUSE (RouteInconsist or
 +
        RouteLoop) and contains the IP address of a suggested next-
 +
         hop ST agent.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  PCode = 8  |      8      |              0              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      next-hop IP address                    |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
                  Figure 30.  NextHopIPAddress
  
CIP Working Group                                           
+
      4.2.2.10.        Origin
  
RFC 1190                Internet Stream Protocol            October 1990
+
        The Origin parameter (PCode = 9) is used to identify the
 +
        origin of the stream, the next higher protocol, and the SAP
 +
        being used in conjunction with that protocol.
  
 +
            NextPcol is an 8-bit field used in demultiplexing
 +
            operations to identify the protocol to be used above ST.
 +
            The values of NextPcol are in the same number space as
 +
            the IP Header's Protocol field and are consequently
 +
            defined in the Assigned Numbers RFC [18].
  
        identifies those targets affected by the change.  In this way,
+
            OriginSAPBytes specifies the length of the OriginSAP,
        NOTIFY is similar to ACCEPT.  NOTIFY includes a ReasonCode to
+
            exclusive of any padding required to maintain 32-bit
        identify the event that triggered the notification.  It also
+
            alignment.
        includes a TargetList, rather than a single Target, since a
 
        single event can affect a branch leading to several targets.
 
  
        NOTIFY is relayed by the ST agents back toward the origin,
+
            OriginIPAddress is (one of) the IP address of the origin.
        along the path established by the CONNECT but in the reverse
 
        direction.  NOTIFY must be acknowledged with an ACK at each
 
        hop.  If intermediate agent corrects the situation without
 
        causing any disruption to the data flow or guarantees, it can
 
        choose to drop the notification message before it reaches the
 
        origin.  If the originating agent receives a NOTIFY, it is then
 
        expected to adjust its own processing and data rates, and to
 
        submit any required CHANGE requests.  As with ACCEPT, the
 
        FlowSpec is not modified on this trip from the target back to
 
        the origin.  It is up to the origin to decide whether a CHANGE
 
        should be submitted. (However, even though the FlowSpec has
 
        not been modified, the situation reported in the
 
  
 +
            OriginSAP identifies the origin's SAP associated with the
 +
            NextPcol protocol.
  
  Application Agent A            Agent 1                   Agent B
+
  0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  PCode = 9  |    PBytes    |    NextPcol  |OriginSAPBytes |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        OriginIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                          OriginSAP          :    Padding    |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
1.                      (high precedence request preempts 10K of
+
                        Figure 31Origin
                            the stream's original 30Kb bandwidth
 
                              allocated to the hop from 1 to B)
 
                                      |
 
                                      V
 
2.  +<------+-- NOTIFY -------------+
 
      |      |  <RVLId=4><SVLId=14>
 
      |      |  <Ref=150>
 
      |      V  <FlowSpec=20Kb,...><TargList=B>
 
3.  |      +-> ACK --------------->+
 
      |          <RVLId=14><SVLId=4>
 
      V          <Ref=150>
 
4. (inform application)
 
      ....
 
5. change(FlowSpec=20Kb,...)
 
      V
 
6.  +---------> CHANGE B ---------->+
 
7.              <RVLId=14><SVLId=4> +--> CHANGE B ------------>+->+
 
                  <Ref=60>            |    <RVLId=44><SVLId=15>  |  |
 
                  <FlowSpec=20Kb,...> V    <Ref=160>            |  |
 
8.          +<- ACK ----------------+    <FlowSpec=20Kb,...>  |  |
 
                  <RVLId=4><SVLId=14>                            V  |
 
9.               <Ref=60>            +--- ACK ------------------+ |
 
                                            <RVLId=15><SVLId=44>  |
 
                                            <Ref=160>              V
 
              ... perform normal ACCEPT processing ...        <-----+
 
  
                Figure 16. Processing NOTIFY Messages
+
      4.2.2.11.        OriginTimestamp
  
 +
        The OriginTimestamp parameter (PCode = 10) is used to
 +
        indicate the time at which the control message was sent.
  
 +
        The units and format of the timestamp is that defined in the
 +
        NTP protocol specification [13].  Note that discontinuities
 +
        over leap seconds are expected.
  
CIP Working Group                                           
+
        Note that the time synchronization implied by the use of
 +
        such a parameter is the subject of systems management
 +
        functions not described in this memo, e.g., NTP.
  
RFC 1190                Internet Stream Protocol            October 1990
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  PCode = 10  |      12      |              0              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                                                              |
 +
+-                          Timestamp                          -+
 +
|                                                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
                        Figure 32.  OriginTimestamp
  
        notify may have prevented the ST agents from meeting the
+
      4.2.2.12.        ReasonCode
        original guarantees.)
 
  
 +
        Several errors may occur during protocol processing.  All ST
 +
        error codes are taken from a single number space.  The
 +
        currently defined values and their meaning is presented in
 +
        the list below.  Note that new error codes may be defined
 +
        from time to time.  All implementations are expected to
 +
        handle new codes in a graceful manner.  If an unknown
 +
        ReasonCode is encountered, it should be assumed to be fatal.
  
  3.6.      Options
+
                0                  1
 +
                0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +
                +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
                |          ReasonCode          |
 +
                +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
      Several options are defined in the CONNECT messageThe special
+
                      Figure 33ReasonCode
      processing required to support each will be described in the
 
      following sections.  The options are independent, i.e., can be set
 
      to one (1, TRUE) or zero (0, FALSE) in any combination.  However,
 
      the effect and implementation of the options is NOT necessarily
 
      independent, and not all combinations are supported.
 
  
 +
              Name      Value                Meaning
 +
        ---------------- ----- ---------------------------------------
  
      3.6.1.        HID Field Option
+
        AcceptTimeout      2  An Accept has not been
 +
                                acknowledged.
  
         The sender of a CONNECT message may or not specify an HID in
+
         AccessDenied      3  Access denied.
        the HID field.  If the HID Field option of the CONNECT message
 
        is not set (the H bit is 0), then the HID field does not
 
        contain relevant information and should be ignored.
 
  
         If this option is set (the H bit is 1), then the HID field
+
         AckUnexpected      4  An unexpected ACK was received.
        contains a relevant value.  If this option is set and the HID
 
        field of the CONNECT contains a non-zero value, that value
 
        represents a proposed HID that initiates the HID negotiation.
 
  
         If the HID Field option is set but the HID field of the CONNECT
+
         ApplAbort         5  The application aborted the stream
         message contains a zero, this means that the sender of that
+
                                abnormally.
        CONNECT message has chosen to defer selection of the HID to the
 
        next-hop agent (the receiver of a CONNECT message).  This
 
        choice can allow a more efficient mechanism for selecting HIDs
 
        and possibly a more efficient mechanism for forwarding data
 
        packets in the case when the previous-hop does not need to
 
        select the HID;  see also Section 4.2.3.5 (page 105).
 
  
         Upon receipt of a CONNECT message with the HID Field option set
+
         ApplDisconnect    6  The application closed the stream
        and the HID field set to zero, a next-hop agent selects the HID
+
                                normally.
        for the hop, enters it into its appropriate data structure, and
 
        returns it in the HID field of the HID-APPROVE message.  The
 
        previous-hop takes the HID from the HID-APPROVE message and
 
        enters it into its appropriate data structure.
 
  
 +
        AuthentFailed      7  The authentication function
 +
                                failed.
  
       3.6.2.        PTP Option
+
        CantGetResrc       8  Unable to acquire (additional)
 +
                                resources.
  
         The PTP option (Point-to-Point) is used to indicate that the
+
         CantRelResrc      9  Unable to release excess
        stream will never have more than a single target.  It
+
                                resources.
        consequently implies that the stream will never need to support
 
        any form of multicasting. Use of the PTP option may thus allow
 
        efficiencies in the way the stream is built or is
 
  
 +
        CksumBadCtl      10  A received control PDU has a bad
 +
                                message checksum.
  
 +
        CksumBadST        11  A received PDU has a bad ST Header
 +
                                checksum.
  
 +
        DropExcdDly      12  A received PDU was dropped because
 +
                                it could not be processed within
 +
                                the delay specification.
  
CIP Working Group                                           
+
        DropExcdMTU      13  A received PDU was dropped because
 +
                                its size exceeds the MTU.
  
RFC 1190                Internet Stream Protocol            October 1990
+
        DropFailAgt      14  A received PDU was dropped because
 +
                                of a failed ST agent.
  
 +
        DropFailHst      15  A received PDU was dropped because
 +
                                of a host failure.
  
         managed.  Specifically, the ST agents do not need to request
+
         DropFailIfc      16  A received PDU was dropped because
        that the intervening networks allocate multicast groups to
+
                                of a broken interface.
        support this stream.
 
  
         The PTP option can only be set to one (1) by the origin, and
+
         DropFailNet      17  A received PDU was dropped because
        must be the same for the entire stream (i.e., propagated by ST
+
                                of a network failure.
        agents).  The details of what this option does are
 
        implementation specific, and do not affect the protocol very
 
        much.
 
  
        If the application attempts to add a new target to an existing
+
              Name      Value                Meaning
         stream that was created with the PTP option set to one (1), the
+
         ---------------- ----- ---------------------------------------
        application should be informed of the error with an ERROR-IN-
 
        REQUEST message with the appropriate reason code.  If a CONNECT
 
        is received whose TargetList contains more than a single entry,
 
        an ERROR-IN-REQUEST message with the appropriate reason code
 
        (PTPError) should be returned to the previous-hop agent (note
 
        that such a CONNECT should never be received if the origin both
 
        implements the PTP option and is functioning properly).
 
  
         As implied in the last paragraph, a subsetted implementation
+
         DropLimits        18  A received PDU was dropped because
        might choose not to implement the PTP option.
+
                                it exceeds the resource limits for
 +
                                its stream.
  
 +
        DropNoResrc      19  A received PDU was dropped due to
 +
                                no available resources (including
 +
                                precedence).
  
       3.6.3.        FDx Option
+
        DropNoRoute       20  A received PDU was dropped because
 +
                                of no available route.
  
         The FDx option is used to indicate that a second stream in the
+
         DropPriLow        21  A received PDU was dropped because
        reverse direction, from the target to the origin, should
+
                                it has a priority too low to be
        automatically be created.  This option is most likely to be
+
                                processed.
        used when the TargetList has only a single entry.  If used when
 
        the TargetList has multiple entries, the resulting streams
 
        would allow bi-directional communication between the origin and
 
        the various targets, but not among the targets.  The FDx option
 
        can only be invoked by the origin, and must be propagated by
 
        intermediate agents.
 
  
         This option is specified by inclusion of both an RFlowSpec and
+
         DuplicateIgn      22  A received control PDU is a
        an RHID parameter in the CONNECT message (possibly with an
+
                                duplicate and is being
        optional RGroup parameter).
+
                                acknowledged.
  
         Any ST agent that receives a CONNECT message with both an
+
         DuplicateTarget  23  A received control PDU contains a
        RFlowSpec and an RHID parameter will create database entries
+
                                duplicate target, or an attempt to
        for streams in both directions and will allocate resources in
+
                                add an existing target.
        both directions for them.  By this we mean that an ST agent
 
        will reserve resources to the next-hop agent for the normal
 
        stream and resources back to the previous-hop agent for the
 
        reverse stream.  This is necessary since it is expected that
 
        network reservation interfaces will require the destination
 
        address(es) in order to make reservations, and because all ST
 
        agents must use the same reservation model.
 
  
 +
        ErrorUnknown      1  An error not contained in this
 +
                                list has been detected.
  
 +
        failure          N/A  An abbreviation used in the text
 +
                                for any of the more specific
 +
                                errors:  DropFailAgt, DropFailHst,
 +
                                DropFailIfc, DropFailNet,
 +
                                IntfcFailure, NetworkFailure,
 +
                                STAgentFailure, FailureRecovery.
  
 +
        FailureRecovery  24  A notification that recovery is
 +
                                being attempted.
  
CIP Working Group                                           
+
        FlowVerBad        25  A received control PDU has a
 +
                                FlowSpec Version Number that is
 +
                                not supported.
  
RFC 1190                Internet Stream Protocol            October 1990
+
        GroupUnknown      26  A received control PDU contains an
 +
                                unknown Group Name.
  
 +
        HIDNegFails      28  HID negotiation failed.
  
         The target agent will select a Name for the reverse stream and
+
         HIDUnknown        29  A received control PDU contains an
        return it (in the RName parameter) and the resulting FlowSpec
+
                                unknown HID.
        (in the RFlowSpec parameter) of the ACCEPT message.  Each agent
 
        that processes the ACCEPT will update its partial stream
 
        database entry for the reverse stream with the Name contained
 
        in the RName parameter.  We assume that the next higher
 
        protocol layer will use the same SAP for both streams.
 
  
 +
              Name      Value                Meaning
 +
        ---------------- ----- ---------------------------------------
  
      3.6.4.        NoRecovery Option
+
        InconsistHID      30  An inconsistency has been detected
 +
                                with a stream Name and
 +
                                corresponding HID.
  
         The NoRecovery option is used to indicate that ST agents should
+
         InconsistGroup    31  An inconsistency has been detected
        not attempt recovery in case of network or component failure.
+
                                with the streams forming a group.
        If a failure occurs, the origin will be notified via a REFUSE
 
        message and the target(s) via a DISCONNECT, with an appropriate
 
        reason code of "failure" (i.e., one of DropFailAgt,
 
        DropFailHst, DropFailIfc, DropFailNet, IntfcFailure,
 
        NetworkFailure, STAgentFailure, FailureRecovery).  They can
 
        then decide whether to wait for the failed component to be
 
        fixed, or drop the target via DISCONNECT/REFUSE messages.  The
 
        NoRecovery option can only be set to one (1) by the origin, and
 
        must be the same for the entire stream.
 
  
 +
        IntfcFailure      32  A network interface failure has
 +
                                been detected.
  
      3.6.5.       RevChrg Option
+
        InvalidHID        33  A received ST PDU contains an
 +
                                invalid HID.
  
         The RevChrg option bit in the FlowSpec is set to one (1) by the
+
         InvalidSender    34  A received control PDU has an
        origin to request that the target(s) pay any charges associated
+
                                invalid SenderIPAddress field.
        with the stream (to the target(s));  see Section 4.2.2.3 (page
 
        83).  If the target is not willing to accept charges, the bit
 
        should be set to zero (0) by the target before returning the
 
        FlowSpec to the origin in an ACCEPT message.
 
  
         If the FDx option is also specified, the target pays charges
+
         InvalidTotByt    35  A received control PDU has an
        for both streams.
+
                                invalid TotalBytes field.
  
 +
        LnkRefUnknown    36  A received control PDU contains an
 +
                                unknown LnkReference.
  
       3.6.6.        Source Route Option
+
        NameUnknown       37  A received control PDU contains an
 +
                                unknown stream Name.
  
         The Source Route Option may be used both for diagnostic
+
         NetworkFailure    38  A network failure has been
        purposes, and, in those hopefully infrequent cases where the
+
                                detected.
        standard routing mechanisms do not produce paths that satisfy
 
        some policy constraint, to allow the origin to prespecify the
 
        ST agents along the path to the target(s).  The idea is that
 
        the origin can explicitly specify the path to a target, either
 
        strictly hop-by-hop or more loosely by specification of one or
 
        more agents through which the path must pass.
 
  
 +
        NoError            0  No error has occurred.
  
 +
        NoRouteToAgent    39  Cannot find a route to an ST
 +
                                agent.
  
 +
        NoRouteToDest    40  Cannot find a route to the
 +
                                destination.
  
 +
        NoRouteToHost    41  Cannot find a route to a host.
  
 +
        NoRouteToNet      42  Cannot find a route to a network.
  
 +
        OpCodeUnknown    43  A received control PDU has an
 +
                                invalid OpCode field.
  
CIP Working Group                                           
+
        PCodeUnknown      44  A received control PDU has a
 +
                                parameter with an invalid PCode.
  
RFC 1190                Internet Stream Protocol            October 1990
+
        ParmValueBad      45  A received control PDU contains an
 +
                                invalid parameter value.
  
 +
              Name      Value                Meaning
 +
        ---------------- ----- ---------------------------------------
  
         The option is specified by including source routing information
+
         PcolIdUnknown    46  A received control PDU contains an
        in the Target structure.  A target may contain zero or more
+
                                unknown next-higher layer protocol
        SrcRoute options;  when multiple options are present, they are
+
                                identifier.
        processed in the order in which they occur.  The parameter code
 
        indicates whether the portion of the path contained in the
 
        parameter is of the strict or loose variety.
 
  
         Since portions of a path may pass through portions of an
+
         ProtocolError    47  A protocol error was detected.
        internet that does not support ST agents, there are also forms
 
        of the SrcRoute option that are converted into the
 
  
 +
        PTPError          48  Multiple targets were specified
 +
                                for a stream created with the PTP
 +
                                option.
  
Application  Agent A        Agent 2        Agent 3              Agent B
+
        RefUnknown        49  A received control PDU contains an
 +
                                unknown Reference.
 +
 
 +
        RestartLocal      50  The local ST agent has recently
 +
                                restarted.
 +
 
 +
        RemoteRestart    51  The remote ST agent has recently
 +
                                restarted.
 +
 
 +
        RetransTimeout    52  An acknowledgment to a control
 +
                                message has not been received
 +
                                after several retransmissions.
 +
 
 +
        RouteBack        53  The routing function indicates
 +
                                that the route to the next-hop is
 +
                                through the same interface as the
 +
                                previous-hop and is not the
 +
                                previous-hop.
 +
 
 +
        RouteInconsist    54  A routing inconsistency has been
 +
                                detected, e.g., a route loop.
 +
 
 +
        RouteLoop        55  A CONNECT was received that
 +
                                specified an existing target.
 +
 
 +
        SAPUnknown       56  A received control PDU contains an
 +
                                unknown next-higher layer SAP
 +
                                (port).
  
1.  (open B<SR=2,3>)
+
        STAgentFailure   57   An ST agent failure has been
2.   V                                              (proc B listening)
+
                                detected.
3.   (source routed to 2)
 
      V
 
4.  (check resources from A to Agent 2: already allocated,
 
      V  reuse control link & HID, no additional resources needed)
 
5.    +-> CONNECT B<SR=2,3>->-+-+
 
          <RVLId=23><SVLId=5> | |
 
6.        <Ref=50>            V |
 
7.    +<- ACK ----------------+ |
 
          <RVLId=5><SVLId=23>  |
 
          <Ref=50>              V
 
8.                (source routed to 3)
 
                            V
 
9.            (reserve resources 2 to 3)
 
                          V
 
10.                      +-> CONNECT B<SR=3> ---->+
 
                              <RVLId=0><SVLId=24>  |
 
                              <Ref=280><HID=4801>  V
 
11.                      +<- HID-APPROVE <--------+
 
                              <RVLId=24><SVLId=33> |
 
                              <Ref=280><HID=4801>  |
 
                                                  V
 
                                          (routing to B)
 
                                                V
 
                                (reserve resources from 3 to B)
 
                                            V
 
12.                                          +-> CONNECT B ---------->+
 
                                                <RVLId=0><SVLId=32>  |
 
                                                <Ref=330><HID=6000>  V
 
13.                                          +<- HID-APPROVE <--------+
 
                                                <RVLId=32><SVLId=45> |
 
                                                <Ref=330><HID=6000>  V
 
14.                                                    (proc B accepts)
 
                                                                      V
 
                ... perform normal ACCEPT processing ...       <-----+
 
  
                    Figure 17. Source Routing Option
+
        StreamExists      58  A stream with the given Name or
 +
                                HID already exists.
  
 +
        StreamPreempted  59  The stream has been preempted by
 +
                                one with a higher precedence.
  
CIP Working Group                                           
+
              Name      Value                Meaning
 +
        ---------------- ----- ---------------------------------------
  
RFC 1190                Internet Stream Protocol            October 1990
+
        STVerBad          60  A received PDU is not ST Version
 +
                                2.
  
 +
        TooManyHIDs      61  Attempt to add more HIDs to a
 +
                                stream than the implementation
 +
                                supports.
  
         corresponding IP Source Routing options by the ST agent that
+
         TruncatedCtl      62  A received control PDU is shorter
        performs the encapsulation.
+
                                than expected.
  
         The SrcRoute option is usually selected by the origin, but may
+
         TruncatedPDU      63  A received ST PDU is shorter than
        be used by intermediate agents if specified as a result of the
+
                                the ST Header indicates.
        routing function.
 
  
         For example, in the topology of Figure 2, if A wants to add B
+
         UserDataSize      64  The UserData parameter is too
        back into the stream, its routing function might decide that
+
                                large to permit a control message
        the best path is via Agent 3.  Since the data is already being
+
                                to fit into a network's MTU.
        multicast across the network connected to C, D, and E, the
 
        route via Agent 3 might cost less than having A replicate the
 
        data packets and send them across A's network a second time.
 
  
 +
      4.2.2.13.        RecordRoute
  
  3.7.      Ancillary Functions
+
        The RecordRoute parameter (PCode = 11) may be used to
 +
        request that the route between the origin and a target be
 +
        recorded and returned to the agent specified in the
 +
        DetectorIPAddress field.
  
      There are several functions and procedures that are required by
+
        FreeOffset is the offset to the position where the next
      the ST Protocol.  They are described in subsequent sections.
+
        next-hop IP address should be inserted.  It is initialized
 +
        to four (4) and incremented by four each time an agent
 +
        inserts its IP address.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  PCode = 11  |    PBytes    |      0      |  FreeOffset  |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      next-hop IP address                    |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                              ...                              :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      next-hop IP address                    |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
      3.7.1.        Failure Detection
+
                      Figure 34. RecordRoute
  
        The ST failure detection mechanism is based on two assumptions:
+
      4.2.2.14.        SrcRoute
  
          1  If a neighbor of an ST agent is up, and has been up
+
        The SrcRoute parameter is used, in the Target structure
            without a disruption, and has not notified the ST agent
+
        shown in Figure 36, to specify the IP addresses of the ST
            of a problem with streams that pass through both, then
+
        agents through which the stream to the target should pass.
            the ST agent can assume that there has not been any
+
        There are two forms of the option, distinguished by the
            problem with those streams.
+
        PCode.
  
          2 A network through which an ST agent has routed a stream
+
        With loose source route (PCode = 18) each ST agent first
            will notify the ST agent if there is a problem that
+
        examines the first next-hop IP address in the option. If
            affects the stream data packets but does not affect the
+
        the address is (one of) the address of the current ST agent,
            control packets.
+
        that entry is removed, and the PBytes field reduced by four
 +
        (4).  If the resulting PBytes field contains 4 (i.e., there
 +
        are no more next-hop IP addresses) the parameter is removed
 +
        from the Target.  In either case, the Target's TargetBytes
 +
        field and the TargetList's PBytes field must be reduced
 +
        accordingly.  The ST agent then routes toward the first
 +
        next-hop IP address in the option, if one exists, or toward
 +
        the target otherwise.  Note that the target's IP address is
 +
        not included as the last entry in the list.
  
         The purpose of the robustness protocol defined here is for ST
+
         With a strict source route (PCode = 19) each ST agent first
         agents to determine that the streams through a neighbor have
+
        examines the first next-hop IP address in the option.  If
         been broken by the failure of the neighbor or the intervening
+
        the address is not (one of) the address of the current ST
         networkThis protocol should detect the overwhelming majority
+
         agent, a routing error has occurred and should be reported
         of failures that can occurOnce a failure is detected,
+
        with the appropriate reason code.  Otherwise that entry is
         recovery procedures are initiated.
+
         removed, and the PBytes field reduced by four (4).  If the
 +
        resulting PBytes field contains 4 (i.e., there are no more
 +
        next-hop IP addresses) the parameter is removed from the
 +
         TargetIn either case, the Target's TargetBytes field and
 +
        the TargetList's PBytes field must be reduced accordingly.
 +
        The ST agent then routes toward the first next-hop IP
 +
        address in the option, if one exists, or toward the target
 +
         otherwiseNote that the target's IP address is not
 +
         included as the last entry in the list.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|      PCode    |    4+4*N    |              0              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      next-hop IP address                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                              ...                              :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      next-hop IP address                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        3.7.1.1.        Network Failures
+
                      Figure 35. SrcRoute
  
            In this memo, a network is defined to be the protocol
+
        Since it is possible that a single hop between ST agents is
            layer(s) below STThis function can be implemented in a
+
        actually composed of multiple IP hops using IP
            hardware module separate from the ST agent, or as software
+
        encapsulation, it might be necessary to also specify an IP
            modules within the ST agent itself, or as a combination of
+
        source routing optionTwo additional PCodes are used in
 +
        this case.  See [15] for a description of IP routing
 +
        options.
  
 +
        An IP Loose Source Route (PCode = 16) indicates that PDUs
 +
        for the next-hop ST agent should be encapsulated in IP and
 +
        that the IP datagram should contain an IP Loose Source Route
 +
        constructed from the list of IP router addresses contained
 +
        in this option.
  
 +
        An IP Strict Source Route (PCode = 17) is similarly used
 +
        when the corresponding IP Strict Source Route option should
 +
        be constructed.
  
 +
        Consequently, the "routing parameter" may consist of a
 +
        sequence of one or more separate parameters with PCodes 16,
 +
        17, 18, or 19.
  
CIP Working Group                                           
+
      4.2.2.15.        Target and TargetList
  
RFC 1190                Internet Stream Protocol            October 1990
+
        Several control messages use a parameter called TargetList
 +
        (PCode = 20), which contains information about the targets
 +
        to which the message pertains.  For each Target in the
 +
        TargetList, the information includes the IP addresses of the
 +
        target, the SAP applicable to the next higher layer
 +
        protocol, the length of the SAP (SAPBytes), and zero or more
 +
        optional SrcRoute parameters;  see Section 4.2.2.14 (page
 +
        95).  Consequently, a Target structure can be of variable
 +
        length.  Each entry has the format shown in Figure 36.
  
 +
        The optional SrcRoute parameter is only meaningful in a
 +
        CONNECT messages;  if present in other messages, they are
 +
        ignored.  Note that the presence of SrcRoute parameter(s)
 +
        reduces the number of Targets that can be contained in a
 +
        TargetList since the maximum size of a TargetList is 256
 +
        bytes.  Consequently an implementation should be prepared to
 +
        accept multiple TargetLists in a single message.
  
             both.  This specification and the robustness protocol do not
+
             TargetIPAddress is the IP Address of the Target.
            differentiate between these alternatives.
 
  
             An ST agent can detect network failures by two mechanisms;
+
             TargetBytes is the length of the Target structure,
            the network can report a failure, or the ST agent can
+
             beginning with the TargetIPAddress and including any
            discover a failure by itself.  They differ in the amount of
+
             SrcRoute Parameter(s).
            information that ST agent has available to it in order to
 
            make a recovery decision.  For example, a network may be
 
             able to report that reserved bandwidth has been lost and the
 
            reason for the loss and may also report that connectivity to
 
            the neighboring ST agent remains intact.  In this case, the
 
            ST agent may request the network to allocate bandwidth anew.
 
            On the other hand, an ST agent may discover that
 
            communication with a neighboring ST agent has ceased because
 
            it has not received any traffic from that neighbor in some
 
             time period.  If an ST agent detects a failure, it may not
 
            be able to determine if the failure was in the network while
 
            the neighbor remains available, or the neighbor has failed
 
            while the network remains intact.
 
  
 +
            SAPBytes is the length of the SAP, excluding any padding
 +
            required to maintain 32-bit alignment.  I.e.,
  
        3.7.1.2.         Detecting ST Stream Failures
+
            there would be no padding required for SAPs with lengths
 +
            of 2, 6, etc., bytes.
  
            Each ST agent periodically sends each neighbor with which it
+
0                  1                  2                  3
            shares a stream a HELLO message. A HELLO message is ACKed
+
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
            if the Reference field is non-zero.  This message exchange
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            is between ST agents, not entities representing streams or
+
|                        TargetIPAddress                        |
            applications (there is no Name field in a HELLO message).
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            That is, an ST agent need only send a single HELLO message
+
|  TargetBytes |  SAPBytes    |                              :
            to a neighbor regardless of the number of streams that flow
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-             -+-+-+-+-+-+-+-+-+
            between them. All ST agents (host as well as intermediate)
+
:                              SAP              :    Padding    |
             must participate in this exchange.  However, only agents
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            that share active streams need to participate in this
 
            exchange.
 
  
            To facilitate processing of HELLO messages, an
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            implementation may either create a separate Virtual Link
+
:                    SrcRoute Parameter(s)                     :
            Identifier for each neighbor having an active stream, or may
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            use the reserved identifier of one (1) for the SVLId field
 
            in all its HELLO messages.
 
  
            An implementation that wishes to send its HELLO messages via
+
                        Figure 36Target
            a data path instead of the control path may setup a separate
 
            stream to its neighbor agent for that purposeThe HELLO
 
            message would contain a HID of zero, indicating a control
 
            message, but would be identified to the next lower protocol
 
            layer as being part of the separate stream.
 
  
            As well as identifying the sender, the HELLO message has two
+
        We assume that the ST agents must know the maximum packet
            fields; a HelloTimer field that is in units of milliseconds
+
        size of the networks to which they are connected (the MTU),
            modulo the maximum for the field size, and a
+
        and those maximum sizes will restrict the number of targets
 +
        that can be specified in control messages. We feel that
 +
        this is not a serious drawback.  High bandwidth networks
 +
        such as the Ethernet or the Terrestrial Wideband network
 +
        support packet sizes large enough to allow well over one
 +
        hundred targets to be specified, and we feel that
 +
        conferences with a larger number of participants will not
 +
        occur for quite some time.  Furthermore, we expect that
 +
        future higher bandwidth networks will allow even larger
 +
        packet sizes.  It may be desirable to send ST voice data
 +
        packets in individual B-ISDN ATM cells, which are small, but
 +
        network services on ATM will provide "adaptation layers" to
 +
        implement network-level fragmentation that may be used to
 +
        carry larger ST control messages.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  PCode = 20  |    PBytes    |        TargetCount = N        |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                            Target 1                          :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                              ...                              :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                            Target N                          :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
                      Figure 37.  TargetList
  
CIP Working Group                                           
+
        If a message must pass across a network whose maximum packet
 +
        size is too small, the message must be broken up into
 +
        multiple messages, each of which carries part of the
 +
        TargetList.  The function of the message can still be
 +
        performed even if the message is so partitioned.  The effect
 +
        in this partitioning is to compromise the performance, but
 +
        still allows proper operation.  For example, if a CONNECT
 +
        message were partitioned, the first CONNECT would establish
 +
        the stream, and the rest of the CONNECTs would be processed
 +
        as additions to the first.  The routing decisions might
 +
        suffer, however, since they would be made on partial
 +
        information.  Nevertheless, the stream would be created.
  
RFC 1190                Internet Stream Protocol            October 1990
+
      4.2.2.16.        UserData
  
 +
        The UserData parameter (PCode = 21) is an optional parameter
 +
        that may be used by the next higher protocol or an
 +
        application to convey arbitrary information to its peers.
 +
        Note that since the size of control messages is limited by
 +
        the smallest MTU in the path to the target(s), the maximum
 +
        size of this parameter cannot be specified a priori.  If the
 +
        parameter is too large for some network's MTU, a
 +
        UserDataSize error will occur.  The parameter must be padded
 +
        to a multiple of 32 bits.
  
             Restarted bit specifying that the ST agent has been
+
             UserBytes specifies the number of valid UserInformation
             restarted recently.  The HelloTimer must appear to be
+
             bytes.
            incremented every millisecond whether a HELLO message is
 
            sent or not, but it is allowable for an ST agent to create a
 
            new HelloTimer only when it sends a HELLO message.  The
 
            HelloTimer wraps around to zero after reaching the maximum
 
            value.  Whenever an ST agent suffers a catastrophic event
 
            that may result in it losing ST state information, it must
 
            reset its HelloTimer to zero and must set the Restarted bit
 
            for the following HelloTimerHoldDown seconds.
 
  
             An ST agent must send HELLO messages to its neighbor with a
+
             UserInformation is arbitrary data meaningful to the next
            period shorter than the smallest RecoveryTimeout parameter
+
             higher protocol layer or application.
             of the FlowSpecs of all the active streams that pass between
 
            the two agents, regardless of direction.  This period must
 
            be smaller by a factor, called HelloLossFactor, which is at
 
            least as large as the greatest number of consecutive HELLO
 
            messages that could credibly be lost while the communication
 
            between the two ST agents is still viable.
 
  
            An ST agent may send simultaneous HELLO messages to all its
+
0                  1                  2                  3
            neighbors at the rate necessary to support the smallest
+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
            RecoveryTimeout of any active stream. Alternately, it may
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            send HELLO messages to different neighbors independently at
+
|  PCode = 21 |    PBytes    |          UserBytes          |
            different rates corresponding to RecoveryTimeouts of
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            individual streams.
+
:                        UserInformation        :    Padding    |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
            The agent that receives a HELLO message expects to receive
+
                      Figure 38UserData
            at least one new HELLO message from a neighbor during the
 
            RecoveryTimeout of every active stream through that
 
            neighborIt can detect duplicate or delayed HELLO messages
 
            by saving the HelloTimer field of the most recent valid
 
            HELLO message from that neighbor and comparing it with the
 
            HelloTimer field of incoming HELLO messages.  It will only
 
            accept an incoming HELLO message from that neighbor if it
 
            has a HelloTimer field that is greater than the most recent
 
            valid HELLO message by the time elapsed since that message
 
            was received plus twice the maximum likely delay variance
 
            from that neighbor.  If the ST agent does not receive a
 
            valid HELLO message within the RecoveryTimeout of a stream,
 
            it must assume that the neighboring ST agent or the
 
            communication link between the two has failed and it must
 
            initiate stream recovery activity.
 
  
            Furthermore, if an ST agent receives a HELLO message that
+
==== ST Control Message PDUs ====
            contains the Restarted bit set, it must assume that the
 
            sending ST agent has lost its ST state.  If it shares
 
            streams with that neighbor, it must initiate stream recovery
 
            activity.  If it does not share streams with that neighbor,
 
            it should not attempt to create one until that
 
  
 +
      Each control message is described in a following section.  See
 +
      Appendix 1 (page 147) for an explanation of the notation.
  
 +
      4.2.3.1.        ACCEPT
  
 +
        ACCEPT (OpCode = 1) is issued by a target as a positive
 +
        response to a CONNECT message.  It implies that the target
 +
        is prepared to accept data from the origin along the stream
 +
        that was established by the CONNECT.  The ACCEPT includes
 +
        the FlowSpec that contains the cumulative information that
 +
        was calculated by the intervening ST agents as the CONNECT
 +
        made its way from the origin to the target, as well as any
 +
        modifications made by the application at the target.  The
 +
        ACCEPT is relayed by the ST agents from the target to the
 +
        origin along the path established by the CONNECT but in the
 +
        reverse direction.  The ACCEPT must be acknowledged with an
 +
        ACK at each hop.
  
CIP Working Group                                           
+
        The FlowSpec is not modified on this trip from the target
 +
        back to the origin.  Since the cumulative FlowSpec
 +
        information can be different for different targets, no
 +
        attempt is made to combine the ACCEPTs from the various
 +
        targets.  The TargetList included in each ACCEPT contains
 +
        the IP address of only the target that issued the ACCEPT.
  
RFC 1190                Internet Stream Protocol            October 1990
+
        Any SrcRoute parameters in the TargetList are ignored.
  
 +
        Since an ACCEPT might be the first response from a next-hop
 +
        on a control link (due to network reordering), the SVLId
 +
        field may be the first source of the Virtual Link Identifier
 +
        to be used in the RVLId field of subsequent control messages
 +
        sent to that next-hop.
  
            bit is no longer set.  If an ST agent receives a CONNECT
+
        When the FDx option has been selected to setup a second
            message from a neighbor whose Restarted bit is still set, it
+
        stream in the reverse direction, the ACCEPT will contain
            must respond with ERROR-IN-REQUEST with the appropriate
+
        both RFlowSpec and RName parametersEach agent should
            reason code (RemoteRestart)If it receives a CONNECT
+
        update the state tables for the reverse stream with this
            message while its own Restarted bit is set, it must respond
+
        information.
            with ERROR-IN-REQUEST with the appropriate reason code
 
            (RestartLocal).
 
  
 +
            TSR (bits 14 and 15) specifies the target's response for
 +
            the use of data packet timestamps; see Section 4 (page
 +
            76).  Its values and semantics are:
  
        3.7.1.3.         Subset
+
              00  Not implemented.
 +
              01  No timestamps are permitted.
 +
              10  Timestamps must always be present.
 +
              11  Timestamps may optionally be present.
  
             This failure detection mechanism subsets by reducing the
+
             Reference contains a number assigned by the agent sending
            complexity of the timing and decisions.  A subsetted ST
+
             the ACCEPT for use in the acknowledging ACK.
            agent sends HELLO messages to all its ST neighbors
 
            regardless of whether there is an active ST stream between
 
             them or not.  The RecoveryTimeout parameter of the FlowSpec
 
            is ignored and is assumed to be the DefaultRecoveryTimeout.
 
            Note that this implies that a REFUSE should be sent for all
 
            CONNECT or CHANGE messages whose RecoveryTimeout is less
 
            than DefaultRecoveryTimeout.  An ST agent will accept an
 
            incoming HELLO message if it has a HelloTimer field that is
 
            greater than the most recent valid HELLO message by
 
            DefaultHelloFactor times the time elapsed since that message
 
            was received.
 
  
 +
            LnkReference is the Reference number from the
 +
            corresponding CONNECT or CHANGE.
  
      3.7.2.        Failure Recovery
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 1  |    0    |TSR|          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |              0              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      FlowSpec Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                    TargetList Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        Streams can fail from various causes;  an ST agent can break, a
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        network can break, or an ST agent can intentionally break a
+
:                    RecordRoute Parameter                    :
        stream in order to give the stream's resources to a higher
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        precedence stream.  We can envision several approaches to
 
        recovery of broken streams, and we consider the one described
 
        here the simplest and therefore the most likely to be
 
        implemented and work.
 
  
        If an intermediate agent fails or a network or part of a
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        network fails, the previous-hop agent and the various next-hop
+
:                      RFlowSpec Parameter                      :
        agents will discover the fact by the failure detection
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        mechanism described in Section 3.7.1 (page 48).  An ST agent
 
        that intentionally breaks a stream obviously knows of the
 
        event.
 
  
        The recovery of an ST stream is a relatively complex and time
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        consuming effort because it is designed in a general manner to
+
!                        RName Parameter                      !
        operate across a large number of networks with diverse
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        characteristics.  Therefore, it may require information to be
 
        distributed widely, and may require relatively long timers.  On
 
        the other hand, since a network is a homogeneous system,
 
        failure recovery in the network may be a relatively faster and
 
        simpler operation.  Therefore an ST agent that detects a
 
        failure should attempt to fix the network failure before
 
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      UserData Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
CIP Working Group                                           
+
                Figure 39.  ACCEPT Control Message
  
RFC 1190                Internet Stream Protocol            October 1990
+
      4.2.3.2.        ACK
  
 +
        ACK (OpCode = 2) is used to acknowledge a request.  The
 +
        Reference in the header is the Reference number of the
 +
        control message being acknowledged.
  
         attempting recovery of the ST stream.  If the stream that
+
         Since a ACK might be the first response from a next-hop on a
         existed between two ST agents before the failure cannot be
+
         control link, the SVLId field may be the first source of the
         reconstructed by network recovery mechanisms alone, then the ST
+
         Virtual Link Identifier to be used in the RVLId field of
         stream recovery mechanism must be invoked.
+
         subsequent control messages sent to that next-hop.
  
        If stream recovery is necessary, the different ST agents may
+
            ReasonCode is usually NoError, but other possibilities
        need to perform different functions, depending on their
+
            exist, e.g., DuplicateIgn.
        relation to the failure.
 
  
         An intermediate agent that breaks the stream intentionally
+
0                  1                  2                  3
         sends DISCONNECT messages with the appropriate reason code
+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
         (StreamPreempted) toward the affected targets.  If the
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        NoRecovery option is selected, it sends a REFUSE message with
+
|  OpCode = 2  |      0      |          TotalBytes         |
        the appropriate reason code(StreamPreempted) toward the origin.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        If the NoRecovery option is not selected, then this agent
+
|            RVLId            |            SVLId            |
        attempts recovery of the stream, as described below.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference         |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |         ReasonCode          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                              0                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        A host agent that is a target of the broken stream or is itself
+
                Figure 40ACK Control Message
        the next-hop of the failed component should release resources
 
        that are allocated to the stream, but should maintain the
 
        internal state information describing the streamIt should
 
        inform any next higher protocol of the failure.  It is
 
        appropriate for that protocol to expect that the stream will be
 
        fixed shortly by some alternate path and so maintain, for some
 
        time period, whatever information in the ST layer, the next
 
        higher layer, and the application is necessary to reactivate
 
        quickly entries for the stream as the alternate path develops.
 
        The agent should use a timeout to delete all the stream
 
        information in case the stream cannot be fixed in a reasonable
 
        time.
 
  
        An intermediate agent that is a next-hop of a failure that was
+
      4.2.3.3.         CHANGE-REQUEST
        not due to a preemption should first verify that there was a
 
        failure. It can do this using STATUS messages to query its
 
        upstream neighbor. If it cannot communicate with that
 
        neighbor, then it should first send a REFUSE message with the
 
        appropriate reason code of "failure" to the neighbor to speed
 
        up the failure recovery in case the hop is unidirectional,
 
        i.e., the neighbor can hear the agent but the agent cannot hear
 
        the neighbor.  The ST agent detecting the failure must then
 
        send DISCONNECT messages with the same reason code toward the
 
        targets.  The intermediate agents process this DISCONNECT
 
        message just like the DISCONNECT that tears down the stream.
 
        However, a target ST agent that receives a DISCONNECT message
 
        with the appropriate reason code (StreamPreempted, or
 
        "failure") will maintain the stream state and notify the next
 
        higher protocol of the failure.  In effect, these DISCONNECT
 
        messages tear down the stream from the point of the failure to
 
        the targets, but inform the targets that the stream may be
 
        fixed shortly.
 
  
 +
        CHANGE-REQUEST (OpCode = 4) is used by an intermediate or
 +
        target agent to request that the origin change the FlowSpec
 +
        of an established stream.  The CHANGE-REQUEST message is
 +
        propagated hop-by-hop to the origin, with an ACK at each
 +
        hop.
  
 +
        Any SrcRoute parameters in the targets of the TargetList are
 +
        ignored.
  
 +
            G (bit 8) is used to request a global, stream-wide
 +
            change;  the TargetList parameter may be omitted when the
 +
            G bit is specified.
  
CIP Working Group                                           
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 4  |G|      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |              0              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      FlowSpec Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
RFC 1190                Internet Stream Protocol            October 1990
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                    TargetList Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      UserData Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        An ST agent that is the previous-hop before the failed
+
            Figure 41CHANGE-REQUEST Control Message
        component first verifies that there was a failure by querying
 
        the downstream neighbor using STATUS messages.  If the neighbor
 
        has lost its state but is available, then the ST agent may
 
        reconstruct the stream if the NoRecovery option is not
 
        selected, as described belowIf it cannot communicate with
 
        the next-hop, then the agent detecting the failure releases any
 
        resources that are dedicated exclusively to sending data on the
 
        broken branch and sends a DISCONNECT message with the
 
        appropriate reason code ("failure") toward the affected
 
        targets.  It does so to speed up failure recovery in case the
 
        communication may be unidirectional and this message might be
 
        delivered successfully.
 
  
        If the NoRecovery option is selected, then the ST agent that
+
      4.2.3.4.         CHANGE
        detects the failure sends a REFUSE message with the appropriate
 
        reason code ("failure") to the previous-hop. If it is breaking
 
        the stream intentionally, it sends a REFUSE message with the
 
        appropriate reason code (StreamPreempted) to the previous-hop.
 
        The TargetList in these messages contains all the targets that
 
        were reached through the broken branch. Multiple REFUSE
 
        messages may be required if the PDU is too long for the MTU of
 
        the intervening network.  The REFUSE message is propagated all
 
        the way to the origin, which can attempt recovery of the stream
 
        by sending a new CONNECT to the affected targets.  The new
 
        CONNECT will be treated by intermediate ST agents as an
 
        addition of new targets into the established stream.
 
  
         If the NoRecovery option is not selected, the ST agent that
+
         CHANGE (OpCode = 3) is used to change the FlowSpec of an
         breaks the stream intentionally or is the previous-hop before
+
         established stream.  Parameters are the same as for CONNECT
         the failed component can attempt recovery of the streamIt
+
         but the TargetList is not requiredThe CHANGE message is
        does so by issuing a new CONNECT message to the affected
+
         processed similarly to the CONNECT message, except that it
         targets.  If the ST agent cannot find new routes to some
+
         travels along the path of an established stream.
        targets, or if the only route to some targets is through the
 
        previous-hop, then it sends one or more REFUSE messages to the
 
         previous-hop with the appropriate reason code ("failure" or
 
        StreamPreempted) specifying the affected targets in the
 
        TargetList.  The previous-hop can then attempt recovery of the
 
        stream by issuing a CONNECT to those targets.  If it cannot
 
        find an appropriate route, it will propagate the REFUSE message
 
        toward the origin.
 
  
         Regardless of which agent attempts recovery of a damaged
+
         If the change to the FlowSpec is in a direction that makes
         stream, it will issue one or more CONNECT messages to the
+
         fewer demands of the involved networks, then the change has
         affected targetsThese CONNECT messages are treated by
+
        a high probability of success along the path of the
         intermediate ST agents as additions of new targets into the
+
         established streamEach ST agent receiving the CHANGE
         established streamThe FlowSpecs of the new CONNECT messages
+
        message makes the necessary requested changes to the network
         should be the same as the ones contained in the most recent
+
         resource allocations, and if successful, propagates the
         CONNECT or CHANGE messages that the ST agent had sent toward
+
         CHANGE message along the established pathsIf the change
         the affected targets when the stream was operational.
+
         cannot be made then the ST agent must recover using
 +
        DISCONNECT and REFUSE messages as in the case of a network
 +
         failure.  Note that a failure to change the resources
 +
        requested for a specific target(s) should not cause other
 +
         targets in the stream to be deleted.  The CHANGE must be
 +
        ACKed.
  
 +
        If the CHANGE is a result of a CHANGE-REQUEST the
 +
        LnkReference field of the CHANGE will contain the value from
 +
        the Reference field of the CHANGE-REQUEST.
  
 +
        It is recommended that the origin only have one outstanding
 +
        CHANGE per target;  if the application requests more that
 +
        one to be outstanding at a time, it is the application's
 +
        responsibility to deal with any sequencing problems that may
 +
        arise.
  
 +
        Any SrcRoute parameters in the targets of the
 +
        TargetListParameter are ignored.
  
CIP Working Group                                           
+
            G (bit 8) is used to request a global, stream-wide
 +
            change;  the TargetList parameter may be omitted when the
 +
            G bit is specified.
  
RFC 1190                Internet Stream Protocol           October 1990
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 3  |G|      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|           Checksum          |              0              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      FlowSpec Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                    TargetList Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        The reconstruction of a broken stream may not proceed smoothly.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        Since there may be some delay while the information concerning
+
:                      UserData Parameter                      :
        the failure is propagated throughout an internet, routing
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        errors may occur for some time after a failure.  As a result,
 
        the ST agent attempting the recovery may receive REFUSE or
 
        ERROR-IN-REQUEST messages for the new CONNECTs that are caused
 
        by internet routing errors.  The ST agent attempting the
 
        recovery should be prepared to resend CONNECTs before it
 
        succeeds in reconstructing the stream.  If the failure
 
        partitions the internet and a new set of routes cannot be found
 
        to the targets, the REFUSE messages will eventually be
 
        propagated to the origin, which can then inform the application
 
        so it can decide whether to terminate or to continue to attempt
 
        recovery of the stream.
 
  
        The new CONNECT may at some point reach an ST agent downstream
+
                Figure 42CHANGE Control Message
        of the failure before the DISCONNECT doesIn this case, the
 
        agent that receives the CONNECT is not yet aware that the
 
        stream has suffered a failure, and will interpret the new
 
        CONNECT as resulting from a routing failure.  It will respond
 
        with an ERROR-IN-REQUEST message with the appropriate reason
 
        code (StreamExists).  Since the timeout that the ST agents
 
        immediately preceding the failure and immediately following the
 
        failure are approximately the same, it is very likely that the
 
        remnants of the broken stream will soon be torn down by a
 
        DISCONNECT message with the appropriate reason code
 
        ("failure").  Therefore, the ST agent that receives the ERROR-
 
        IN-REQUEST message with reason code (StreamExists) should
 
        retransmit the CONNECT message after the ToConnect timeout
 
        expires.  If this fails again, the request will be retried for
 
        NConnect times.  Only if it still fails will the ST agent send
 
        a REFUSE message with the appropriate reason code (RouteLoop)
 
        to its previous-hop.  This message will be propagated back to
 
        the ST agent that is attempting recovery of the damaged stream.
 
        That ST agent can issue a new CONNECT message if it so chooses.
 
        The REFUSE is matched to a CONNECT message created by a
 
        recovery operation through the LnkReference field in the
 
        CONNECT.
 
  
        ST agents that have propagated a CONNECT message and have
+
      4.2.3.5.         CONNECT
        received a REFUSE message should maintain this information for
 
        some period of time. If an agent receives a second CONNECT
 
        message for a target that recently resulted in a REFUSE, that
 
        agent may respond with a REFUSE immediately rather than
 
        attempting to propagate the CONNECT. This has the effect of
 
        pruning the tree that is formed by the propagation of CONNECT
 
        messages to a target that is not reachable by the routes that
 
        are selected first. The tree will pass through any given ST
 
        agent only once, and the stream setup phase will be completed
 
        faster.
 
  
 +
        CONNECT (OpCode = 5) requests the setup of a new stream or
 +
        an addition to or recovery of an existing stream.  Only the
 +
        origin can issue the initial set of CONNECTs to setup a
 +
        stream, and the first CONNECT to each next-hop is used to
 +
        convey the initial suggestion for a HID.  If the stream's
 +
        data packets will be sent to some set of next-hop ST agents
 +
        by multicast then the CONNECTs to that set must suggest the
 +
        same HID.  Otherwise, the HIDs in the various CONNECTs can
 +
        be different.
  
 +
        The CONNECT message must fit within the maximum allowable
 +
        packet size (MTU) for the intervening network.  If a CONNECT
 +
        message is too large, it must be fragmented into multiple
 +
        CONNECT messages by partitioning the TargetList; see Section
 +
        4.2 (page 77).  Any UserData parameter will be replicated in
 +
        each fragment for delivery to all targets.
  
 +
        The next-hop can initially respond with any of the following
 +
        five responses:
  
CIP Working Group                                           
+
          1  ERROR-IN-REQUEST, which implies that the CONNECT was
 +
            not valid and has been ignored,
  
RFC 1190                Internet Stream Protocol            October 1990
+
          2  ACK, which implies that the CONNECT with the H bit not
 +
            set was valid and is being processed,
  
 +
          3  HID-APPROVE, which implies that the CONNECT with the
 +
            H bit set was valid, and the suggested HID can be
 +
            used or was deferred,
  
        The time period for which the failure information is maintained
+
          4  HID-REJECT, which implies that the CONNECT with the H
        must be consistent with the expected lifetime of that
+
            bit set was valid but the suggested HID cannot be
        information.  Failures due to lack of reachability will remain
+
            used and another must be suggested in a subsequent
        relevant for time periods large enough to allow for network
+
            HID-CHANGE message, or
        reconfigurations or repairs.  Failures due to routing loops
 
        will be valid only until the relevant routing information has
 
        propagated, which can be a short time period.  Lack of
 
        bandwidth resulting from over-allocation will remain valid
 
        until streams are terminated, which is an unpredictable time,
 
        so the time that such information is maintained should also be
 
        short.
 
  
        If a CONNECT message reaches a target, the target should as
+
          5  REFUSE, which implies that the CONNECT was valid but
        efficiently as possible use the state that it has saved from
+
            the included list of targets in the REFUSE cannot be
        before the stream failed during recovery of the stream.  It
+
            processed for the stated reason.
        will then issue an ACCEPT message toward the origin.  The
 
        ACCEPT message will be intercepted by the ST agent that is
 
        attempting recovery of the damaged stream, if not the origin.
 
        If the FlowSpec contained in the ACCEPT specifies the same
 
        selection of parameters as were in effect before the failure,
 
        then the ST agent that is attempting recovery will not
 
        propagate the ACCEPT.  If the selections of the parameters are
 
        different, then the agent that is attempting recovery will send
 
        the origin a NOTIFY message with the appropriate reason code
 
        (FailureRecovery) that contains a FlowSpec that specifies the
 
        new parameter values.  The origin may then have to change its
 
        data generation characteristics and the stream's parameters
 
        with a CHANGE message to use the newly recovered subtree.
 
  
 +
        The next-hop will later relay back either an ACCEPT or
 +
        REFUSE from each target not already specified in the REFUSE
 +
        of case 5 above (note multiple targets may be included in a
 +
        single REFUSE message).
  
         3.7.2.1.         Subset
+
         An intermediate ST agent that receives a CONNECT selects the
 +
        next-hop ST agents, partitions the TargetList accordingly,
 +
        reserves network resources in the direction toward the
 +
        next-hop, updating the FlowSpec accordingly (see Section
 +
        4.2.2.3 (page 81)), selects a proposed HID for each next-
 +
        hop, and sends the resulting CONNECTs.
  
            Subsets of this mechanism may reduce the functionality in
+
        If the intermediate ST agent that is processing a CONNECT
            the following waysA host agent might not retain state
+
        fails to find a route to a target, then it responds with a
            describing a stream that fails with a DISCONNECT message
+
        REFUSE with the appropriate reason codeIf the next-hop to
            with the appropriate reason code ("failure" or
+
        a target is by way of the network from which it received the
            StreamPreempted).
+
        CONNECT, then it sends a NOTIFY with the appropriate reason
 +
        code (RouteBack).  In either case, the TargetList specifies
 +
        the affected targets.  The intermediate ST agent will only
 +
        route to and propagate a CONNECT to the targets for which it
 +
        does not issue either an ERROR-IN-REQUEST or a REFUSE.
  
            An agent might force the NoRecovery option always to be set.
+
        The processing of a received CONNECT message requires care
            In this case, it will allow the option to be propagated in
+
        to avoid routing loops that could result from delays in
            the CONNECT message, but will propagate the REFUSE message
+
        propagating routing information among ST agents.  If a
            with the appropriate reason code ("failure" or
+
        received CONNECT contains a new Name, a new stream should be
            StreamPreempted) without attempting recovery of the damaged
+
        created (unless the Virtual Link Identifier matches a known
            stream.
+
        link in which case an ERROR-IN-REQUEST should be sent).  If
 +
        the Name is known, there are four cases:
  
            If an ST agent allows stream recovery and attempts recovery
+
          1  the Virtual Link Identifier matches and the Target
            of a stream, it might choose a FlowSpec to specify exactly
+
            matches a current Target -- the duplicate target
            the current values of the parameters, with no ranges or
+
            should be ignored.
            options.
 
  
 +
          2  the Virtual Link Identifier matches but the Target is
 +
            new -- the stream should be expanded to include the
 +
            new target.
  
 +
          3  the Virtual Link Identifier differs and the Target
 +
            matches a current Target -- an ERROR-IN-REQUEST
 +
            message should be sent specifying that the target is
 +
            involved in a routing loop.  If a reroute, the old
 +
            path will eventually timeout and send a DISCONNECT;
 +
            a subsequent retransmission of the rerouted CONNECT
 +
            will then be processed under case 2 above.
  
 +
          4  the Virtual Link Identifier differs but the Target is
 +
            new -- a new (instance of the) stream should be
 +
            created for the target that is deliberately part of
 +
            a loop using a SrcRoute parameter.
  
 +
        Note that the test for a known or matching Target includes
 +
        comparing any SrcRoute parameter that might be present.
  
CIP Working Group                                           
+
        Option bits are specified by either the origin's service
 +
        user or by an intermediate agent, depending on the specific
 +
        option.  Bits not specified below are currently unspecified,
 +
        and should be set to zero (0) by the origin agent and not
 +
        changed by other agents unless those agents know their
 +
        meaning.
  
RFC 1190                Internet Stream Protocol            October 1990
+
            H (bit 8) is used for the HID Field option; see Section
 +
            3.6.1 (page 44).  It is set to one (1) only if the HID
 +
            field contains either zero (when the HID selection is
 +
            being deferred), or the proposed HID.  This bit is zero
 +
            (0) if the HID field does not contain valid data and
 +
            should be ignored.
  
 +
            P (bit 9) is used for the PTP option; see Section 3.6.2
 +
            (page 44).
  
      3.7.3.       A Group of Streams
+
            S (bit 10) is used for the NoRecovery option; see Section
 +
            3.6.4 (page 46).
  
        There may be a need to associate related streams.  The Group
+
            TSP (bits 14 and 15) specifies the origin's proposal for
        mechanism is simply an association technique that allows ST
+
            the use of data packet timestamps; see Section 4 (page
        agents to identify the different streams that are to be
+
            76).  Its values and semantics are:
        associated.  Streams are in the same Group if they have the
 
        same Group Name in the GroupName field of the (R)Group
 
        parameter.  At this time there are no ST control messages that
 
        modify Groups.  Group Names have the same format as stream
 
        Names, and can share the same name space.  A stream that is a
 
        member of a Group can specify one or more (Subgroup Identifier,
 
        Relation) tuplesThe Relation specifies how the members of
 
        the Subgroup of the Group are related.  The Subgroups
 
        Identifiers need only be unique within the Group.
 
  
        Streams can be associated into Groups to support activities
+
              00  No proposal.
        that deal with a number of streams simultaneouslyThe
+
              01  Cannot insert timestamps.
        operation of Groups of streams is a matter for further study,
+
              10 Must always insert timestamps.
        and this mechanism is provided to support that study. This
+
              11 Can insert timestamps if requested.
        mechanism allows streams to be identified as belonging to a
 
        given Group and Subgroup, but in order to have any effect, the
 
        behavior that is expected of the Relation must be implemented
 
        in the ST agents. Possible applications for this mechanism
 
        include the following:
 
  
          o  Associating streams that are part of a floor-controlled
+
            RVLId, the receiver's Virtual Link Identifier, is set to
            conference.  In this case, only one origin can send data
+
            zero in all CONNECT messages until its value arrives in
            through its stream at any given time.  Therefore, at any
+
            the SVLId field of an acknowledgment to the CONNECT.
            point where more than one stream passes through a branch
 
            or network, only enough bandwidth for one stream needs
 
            to be allocated.
 
  
          o  Associating streams that cannot exist independently.  An
+
            SVLId, the sender's Virtual Link Identifier, is set to a
            example of this may be the various streams that carry
+
            value chosen by each hop to facilitate efficient
            the audio, video, and data components of a conference,
+
            dispatching of subsequent control messages.
            or the various streams that carry data from the
 
            different participants in a conference.  In this case,
 
            if some ST agent must preempt more than a single stream,
 
            and it has selected any one of the streams so
 
            associated, then it should also preempt the rest of the
 
            members of that Subgroup rather than preempting any
 
            other streams.
 
  
          o  Associating streams that must not be completed
+
            HID is the identifier that will be used with data packets
            independentlyThis example is similar to the preceding
+
            moving through the stream in the direction from the
            one, but relates to the stream setup phaseIn this
+
            origin to the targetsIt is a hop-by-hop shorthand
            example, any single member of a Subgroup of streams need
+
            identifier for the stream's Name, and is chosen by each
            not be completed unless the rest are also completed.
+
            agent for the branch to the next-hop agentsThe
            Therefore, if one stream becomes blocked, all the others
+
            contents of the HID field are only valid, and a HID-
            will also be blockedIn this case, if there are not
+
            REJECT or HID-APPROVE reply may only be sent, when the
            enough resources to support all the conferences that are
+
            HID Field option (H bit) is set (1). If the HID Field
            attempted, some number of the conferences will complete
+
            option is specified and the proposed HID is zero, the
 +
            selection of the HID is deferred to the receiving next-
 +
            hop agentIf the HID Field option is not set (H bit is
 +
            0), then the HID field does not contain valid data and
 +
            should be ignored;  see Section 3.6.1 (page 44).
  
 +
            TargetList is the list of IP addresses of the target
 +
            processes.  It is of arbitrary size up to the maximum
 +
            allowed for packets traveling across the specific
 +
            network.
  
CIP Working Group                                           
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 5  |H|P|S|  0  |TSP|          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId/0            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |            HID/0            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                      Origin Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      FlowSpec Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      TargetList Parameter(s)                  :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
RFC 1190                Internet Stream Protocol            October 1990
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                        Group Parameter                        :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                  MulticastAddress Parameter                  :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
            and other will be blocked, rather than all conferences
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            be partially completed and partially blocked.
+
:                    RecordRoute Parameter                    :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        This document assumes that the creation and membership of the
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        Group will be managed by the next protocol above ST, with the
+
:                      RFlowSpec Parameter                      :
        assistance of ST.  For example, the next higher protocol
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        would request ST to create a unique Group Name and a set of
 
        Subgroups with specified characteristics.  The next higher
 
        protocol would distribute this information to the other
 
        participants that were to be members of the Group.  Each
 
        would transfer the Group Name, Subgroups, and Relations to
 
        the ST layer, which would simply include them in the stream
 
        state.
 
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                        RGroup Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        3.7.3.1.        Group Name Generator
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        RHID Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
            This facility is provided so that an application or higher
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            layer protocol can obtain a unique Group Name from the ST
+
:                      UserData Parameter                      :
            layer.  This is a mechanism for the application to request
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            the allocation of a Group Name that is independent of the
 
            request to create a stream.  The Group Name is used by the
 
            application or higher layer protocol when creating the
 
            streams that are to be part of a group.  All that is
 
            required is a function of the form:
 
  
               AllocateGroupName()
+
               Figure 43.  CONNECT Control Message
                  -> result, GroupName
 
  
            A corresponding function to release a Group Name is also
+
      4.2.3.6.        DISCONNECT
            desirable;  its form is:
 
  
              ReleaseGroupName( GroupName )
+
        DISCONNECT (OpCode = 6) is used by an origin to tear down an
                  -> result
+
        established stream or part of a stream, or by an
 +
        intermediate agent that detects a failure between itself and
 +
        its previous-hop, as distinguished by the ReasonCode.  The
 +
        DISCONNECT message specifies the list of targets that are to
 +
        be disconnected.  An ACK is required in response to a
 +
        DISCONNECT message.  The DISCONNECT message is propagated
 +
        all the way to the specified targets.  The targets are
 +
        expected to terminate their participation in the stream.
  
 +
        Note that in the case of a failure it may be advantageous to
 +
        retain state information as the stream should be repaired
 +
        shortly;  see Section 3.7.2 (page 52).
  
        3.7.3.2.        Subset
+
            G (bit 8) is used to request a DISCONNECT of all the
 +
            stream's targets; the TargetList parameter may be omitted
 +
            when the G bit is set (1).
  
            Since Groups are currently intended to support
+
0                  1                  2                  3
            experimentation, and it is not clear how best to use them,
+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
            it is appropriate for an implementation not to support
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Groups. At this time, a subsetted ST agent may ignore the
+
| OpCode = 6  |G|      0      |          TotalBytes          |
             Group parameter.  It is expected that in the future, when
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Groups transition from being an experimental concept to an
+
|            RVLId            |            SVLId             |
            operational one, it may be the case that such subsetting
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            will no longer be acceptable.  At that time, a new
+
|          Reference          |        LnkReference          |
            subsetting option may be defined.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |          ReasonCode          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                    TargetList Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      UserData Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
              Figure 44.  DISCONNECT Control Message
  
 +
      4.2.3.7.        ERROR-IN-REQUEST
  
 +
        ERROR-IN-REQUEST (OpCode = 7) is sent in acknowledgment to a
 +
        request in which an error is detected.  No action is taken
 +
        on the erroneous request and no state information for the
 +
        stream is retained.  Consequently it is appropriate for the
 +
        SVLId to be zero (0).  No ACK is expected.
  
 +
        An ERROR-IN-REQUEST is never sent in response to either an
 +
        ERROR-IN-REQUEST or an ERROR-IN-RESPONSE;  however, the
 +
        event should be logged for diagnostic purposes.  The
 +
        receiver of an ERROR-IN-REQUEST is encouraged to try again
 +
        without waiting for a retransmission timeout.
  
CIP Working Group                                           
+
            Reference is the Reference number of the erroneous
 +
            request.
  
RFC 1190                Internet Stream Protocol           October 1990
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 7  |      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |           SVLId/0            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |          ReasonCode          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
      3.7.4.        HID Negotiation
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                          ErroredPDU                          :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        Each data packet must carry a value to identify the stream to
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        which it belongs, so that forwarding can be performed.
+
:                      TargetList Parameter                    :
        Conceptually, this value could be the Name of the stream.  A
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        shorthand identifier is desirable for two reasons.  First,
 
        since each data packet must carry this identifier, network
 
        bandwidth efficiency suggests that it be as small as
 
        possible.  This is particularly important for applications
 
        that use small data packets, and that use low bandwidth
 
        networks, such as voice across packet radio networks.
 
        Second, the operation of mapping this identifier into a data
 
        object that contains the forwarding information must be
 
        performed at each intermediate ST agent in the stream.  To
 
        minimize delay and processing overhead, this operation should
 
        be as efficient as possible.  Most likely, this identifier
 
        will be used to index into an internal table.  To meet these
 
        goals, ST has chosen to use a 16-bit hop-by-hop identifier
 
        (HID).  It is large enough to handle the foreseen number of
 
        streams during the expected life of the protocol while small
 
        enough not to preclude its use as a forwarding table index.
 
        Note, however, that HID 0 is reserved for control messages,
 
        and that HIDs 1-3 are also reserved for future use.
 
  
        When ST makes use of multicast ability in networks that
+
          Figure 45ERROR-IN-REQUEST Control Message
        provide it, a data packet multicast by an ST agent will be
 
        received identically by several next-hop ST agentsIn a
 
        multicast environment, the HID must be selected either by
 
        some network-wide mechanism that selects unique identifiers,
 
        or it must be selected by the sender of the CONNECT message.
 
        Since we feel any network-wide mechanism is outside the scope
 
        of this protocol, we propose that the previous-hop agent
 
        select the HID and send it in the CONNECT message (with the
 
        HID Field option set, see Section 3.6.1 (page 44)) subject to
 
        the approval of the next-hop agents.  We call this "HID
 
        negotiation".
 
  
        As an origin ST agent is creating a stream or as an
+
      4.2.3.8.         ERROR-IN-RESPONSE
        intermediate agent is propagating a CONNECT message, it must
 
        make a routing decision to determine which targets will be
 
        reached through which next-hop ST agents. In some cases,
 
        several next-hops can be reached through a network that
 
        supports multicast delivery. If so, those next-hops will be
 
        made members of a multicast group and data packets will be
 
        sent to the group. Different CONNECT messages are sent to
 
        the several next-hops even if the data packets will be sent
 
        to the multicast group, because the CONNECT messages contain
 
        different TargetLists and are acknowledged and accepted
 
        separately.  However, the HID contained by the different
 
        CONNECT message must be identical.  The ST agent selects a
 
        16-bit quantity to be the HID and inserts it into each
 
  
 +
        ERROR-IN-RESPONSE (OpCode = 8) is sent in acknowledgment to
 +
        a response in which an error is detected.  No ACK is
 +
        expected.  Action taken by the requester and responder will
 +
        vary with the nature of the request.
  
 +
        An ERROR-IN-REQUEST is never sent in response to either an
 +
        ERROR-IN-REQUEST or an ERROR-IN-RESPONSE;  however, the
 +
        event should be logged for diagnostic purposes.  The
 +
        receiver of an ERROR-IN-RESPONSE is encouraged to try again
 +
        without waiting for a retransmission timeout.
  
CIP Working Group                                           
+
        Reference identifies the erroneous response.
  
RFC 1190                Internet Stream Protocol           October 1990
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 8  |      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|           Checksum          |          ReasonCode          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                          ErroredPDU                          :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        CONNECT message that is then sent to the appropriate
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        next-hop.
+
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        The next-hop agents that receive the CONNECT messages must
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        propagate the CONNECT messages toward the targets, but must
+
:                      TargetList Parameter                    :
        also look at the HID and decide whether they can approve it.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        An ST agent can only receive data packets with a given HID if
 
        they belong to a single stream.  If the ST agent already has
 
        an established stream that uses the proposed HID, this is a
 
        HID collision, and the agent cannot approve the HID for the
 
        new stream.  Otherwise the agent can approve the HID.  If it
 
        can approve the HID, then it must make note of that HID and
 
        it must respond with a HID-APPROVE message (unless it can
 
        immediately respond with an ERROR-IN-REQUEST or a REFUSE).
 
        If it cannot approve the HID then it must respond with a
 
        HID-REJECT message.
 
  
        An agent that sends a CONNECT message with the H bit set
+
          Figure 46.  ERROR-IN-RESPONSE Control Message
        awaits its acknowledgment message (which could be a
 
        HID-ACCEPT, HID-REJECT, or an ERROR-IN-REQUEST) from the
 
        next-hops independently of receiving ACCEPT messages.  If it
 
        does not receive an acknowledgment within timeout ToConnect,
 
        it will resend the CONNECT.  If each next-hop agent responds
 
        with a HID-ACCEPT, this implies that they have each approved
 
        of the HID, so it can be used for all subsequent data
 
        packets.  If one or more next-hops respond with an
 
        HID-REJECT, then the agent that selected the HID must select
 
        another HID and send it to each next-hop in a set of
 
        HID-CHANGE messages.  The next-hop agents must respond to
 
        (and thus acknowledge) these HID-CHANGE messages with either
 
        a HID-ACCEPT or a HID-REJECT (or, in the case of an error, an
 
        ERROR-IN-REQUEST, or a REFUSE if the next-hop agent wants to
 
        abort the HID negotiation process after rejecting NHIDAbort
 
        proposed HIDs).  If the agent does not receive such a
 
        response within timeout ToHIDChange, it will resend the
 
        HID-CHANGE up to NHIDChange times.  If any next-hop agents
 
        respond with a REFUSE message that specifies all the targets
 
        that were included in the corresponding CONNECT, then that
 
        next-hop is removed from the negotiationThe overall
 
        negotiation is complete only when the agent receives a
 
        HID-ACCEPT to the same proposed HID from all the next-hops
 
        that do not respond with an ERROR-IN-REQUEST or a REFUSE.
 
  
        This negotiation may continue an indeterminate length of
+
      4.2.3.9.         HELLO
        time. In fact, the CONNECT messages could propagate to the
 
        targets and their ACCEPT messages may potentially propagate
 
        back to the origin before the negotiation is complete. If
 
        this were permitted, the origin would not be aware of the
 
        incomplete negotiation and could begin to send data packets.
 
        Then the agent that is attempting to select a HID would have
 
        to discard any data rather than sending it to the next-hops
 
        since it might not have a valid HID to send with the data.
 
  
 +
        HELLO (OpCode = 9) is used as part of the ST failure
 +
        detection mechanism; see Section 3.7.1.2 (page 49).
  
CIP Working Group                                           
+
            R (bit 8) is used for the Restarted bit.
  
RFC 1190                Internet Stream Protocol            October 1990
+
            Reference is non-zero to inform the receiver that an ACK
 +
            should be promptly sent so that the sender can update its
 +
            round-trip time estimates.  If the Reference is zero, no
 +
            ACK should be sent.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 9  |R|      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId/0            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference/0          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |              0              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                          HelloTimer                          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        To prevent this situation, an ACCEPT should not be propagated
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        back to the previous-hop until the HID negotiation with the
+
!                        OriginTimestamp                        !
        next-hops has been completed.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        Although it is possible that the negotiation extends for an
+
                Figure 47HELLO Control Message
        arbitrary length of time, we consider this to be very
 
        unlikelySince the HID is only relevant across a single
 
        hop, we can estimate the probability that a randomly selected
 
        HID will conflict with the HID of an established stream.
 
        Consider a stream in which the hop from an ST agent to ten
 
        next-hop agents is through the multicast facility of a given
 
        network.  Assume also that each of the next-hop agents
 
        participates in 1000 other streams, and that each has been
 
        created with a different HID.  A randomly selected 16-bit HID
 
        will have a probability of greater than 85.9% of succeeding
 
        on the first try, 98.1% of succeeding on the second, and
 
        99.8% of succeeding on the third.  We therefore suggest that
 
        a 16-bit HID space is sufficiently large to support ST until
 
        better multicast HID selection procedures, e.g., HID servers,
 
        can be deployed.
 
  
        An obvious way to select the HID is for the ST agents to use
+
      4.2.3.10.       HID-APPROVE
        a random number generator as suggested above. An alternate
 
        mechanism is for the intermediate agents to use the HID
 
        contained in the incoming CONNECT message for all the
 
        outgoing CONNECT messages, and generate a random number only
 
        as a second choice.  In this case, the origin ST agent would
 
  
 +
        HID-APPROVE (OpCode = 10) is used by the agent that is
 +
        responding to either a CONNECT or HID-CHANGE to agree to
 +
        either use the proposed HID or to the addition or deletion
 +
        of the specified HID.  In all cases but deletion, the newly
 +
        approved HID is returned in the HID field;  for deletion,
 +
        the HID field must be set to zero.  The HID-APPROVE is the
 +
        acknowledgment of a CONNECT or HID-CHANGE.
  
          Agent 3                      Agent B
+
        The optional FreeHIDs parameter provides the previous-hop
 +
        agent with hints about what other HIDs are acceptable in
 +
        case a multicast HID is being negotiated;  see Section
 +
        4.2.2.4 (page 84).
  
      1.    +-> CONNECT B -------------->+
+
        Since a HID-APPROVE might be the first response from a
                <RVLId=0><SVLId=32>      |
+
        next-hop on a control link, the SVLId field may be the first
                <Ref=315><HID=5990>      V
+
        source of the Virtual Link Identifier to be used in the
      2.            (Check HID Table, 5990 busy, 6000-11 unused)
+
        RVLId field of subsequent control messages sent to that
                                          V
+
        next-hop.
      3.    +<- HID-REJECT --------------+
 
            |  <RVLId=32><SVLId=45>
 
            |  <Ref=315><HID=5990>
 
            V  <FreeHIDs=5990:0000FFF0>
 
      4.    +-> HID-CHANGE  ------------>+
 
                <RVLId=45><SVLId=32>    |
 
                <Ref=320><HID=6000>      V
 
      5.            (Check HID Table, 6000 (still) available)
 
                                          V
 
      6.     +<- HID-APPROVE -------------+
 
                <RVLId=32><SVLId=45>
 
                <Ref=320><HID=6000>
 
  
       7.    (Both parties have now agreed to use HID 6000)
+
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 10  |       0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |              HID             |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                              0                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        Figure 18.  Typical HID Negotiation (No Multicasting)
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      FreeHIDs Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
            Figure 48.  HID-APPROVE Control Message
  
CIP Working Group                                           
+
      4.2.3.11.        HID-CHANGE-REQUEST
  
RFC 1190                Internet Stream Protocol            October 1990
+
        HID-CHANGE-REQUEST (OpCode = 12) is used by a next-hop agent
 +
        that would like, for administrative reasons, to change the
 +
        HID that is in use.  The receiving previous-hop agent
 +
        acknowledges the request by either an ERROR-IN-REQUEST if it
 +
        is unwilling to make the requested change, or with a HID-
 +
        CHANGE if it can accommodate the request.
  
 +
            A (bit 8) is used to indicate that the specified HID
 +
            should be included in the set of HIDs for the specified
 +
            Name.  When a HID is added, the acknowledging HID-APPROVE
 +
            should contain a HID field whose contents is the HID just
 +
            added.
  
        be responsible for generating the HID, and the same HID could
+
            D (bit 9) is used to indicate that the specified HID
        be propagated for the entire streamThis approach has the
+
            should be removed in the set of HIDs for the specified
        marginal advantage that the HID could be created by a higher
+
            Name.  When a HID is deleted, the acknowledging HID-
        layer protocol that might have global knowledge and could
+
            APPROVE should contain a HID field whose contents is
        select small, globally unique HIDs for all the streams.  While
+
            zeroNote that the Reference field may be used to
        this is possible, we leave it for further study.
+
            determine the HID that has been deleted.
  
 +
            If neither bit is set, the specified HID should replace
 +
            that currently in use with the specified Name.
  
      Agent 2                           Agent C        Agent D
+
0                  1                  2                   3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 12  |A|D|    0    |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |              HID              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                              0                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
  1.    +->+-> CONNECT ---------------------------------->+
+
           Figure 49.  HID-CHANGE-REQUEST Control Message
            |  <RVLId=0><SVLId=26>                        |
 
            |  <Ref=250><HID=4824>                        |
 
            V  <Mcast=224.1.18.216,01:00:5E:01:12:d8>    |
 
  2.      +-> CONNECT --------------------+              |
 
                <RVLId=0><SVLId=25>        |              |
 
                <Ref=252><HID=4824>        |              V
 
  3.           <Mcast=224.1.18.216,        V      (Check HID Table)
 
  4.           01:00:5E:01:12:d8> (Check HID Table)  (4824 ok)
 
                                        (4824 busy) (4800-4809 ok)
 
                                      (4800-4820 ok)      |
 
                                            V              |
 
  5.      +<- HID-REJECT -----------------+              |
 
            |  <RVLId=25><SVLId=54>                      |
 
            |  <Ref=252><HID=4824>                        |
 
            V  <FreeHIDs=4824:FFFFF800>                  V
 
  6.    +<-+<- HID-APPROVE -------------------------------+
 
        |      <RVLId=26><SVLId=64>
 
        |      <Ref=250><HID=4824>
 
        V      <FreeHIDs=4824:FFC00080>
 
        (find common HID 4800)
 
        V
 
  7.    +->+-> HID-CHANGE ------------------------------->+
 
            |  <RVLId=64><SVLId=26>                      |
 
            V  <Ref=253><HID=4800>                        |
 
  8.      +-> HID-CHANGE ---------------->+              |
 
                <RVLId=54><SVLId=25>        |              V
 
  9.          <Ref=254><HID=4800>        V      (Check HID Table)
 
  10.                              (Check HID Table)  (4800 ok)
 
                                      (4800-4820 ok) (4800-4809 ok)
 
                                            V              |
 
  11.      +<- HID-APPROVE ----------------+              |
 
            |  <RVLId=25><SVLId=54>                      |
 
            |  <Ref=254><HID=4800>                        |
 
            V  <FreeHIDs=4800:7FFFF800>                  V
 
  12.  +<-+<- HID-APPROVE -------------------------------+
 
        |      <RVLId=26><SVLId=64>
 
        |      <Ref=253><HID=4800>
 
        V      <FreeHIDs=4800:7FC00080>
 
  13.  (all parties have now agreed to use HID 4800)
 
  
                Figure 19. Multicast HID Negotiation
+
      4.2.3.12.        HID-CHANGE
  
 +
        HID-CHANGE (OpCode = 11) is used by the agent that issued a
 +
        CONNECT and received a HID-REJECT to attempt to negotiate a
 +
        suitable HID.  The HID in the HID-CHANGE message must be
 +
        different from that in the CONNECT, or any previous HID-
 +
        CHANGE messages for the given Name.  The agent receiving the
 +
        HID-CHANGE must respond with a HID-APPROVE if the new HID is
 +
        suitable, or a HID-REJECT if it is not.  In case of an
 +
        error, either an ERROR-IN-REQUEST or a REFUSE may be
 +
        returned as an acknowledgment.
  
CIP Working Group                                           
+
        Since an agent may send CONNECT messages with the same HID
 +
        to several next-hops in order to use multicast data
 +
        transfer, any HID-CHANGE must also be sent to the same set
 +
        of next-hops.  Therefore, a next-hop agent must be prepared
 +
        to receive a HID-CHANGE before or after it has sent a HID-
 +
        APPROVE response to the CONNECT or a previous HID-CHANGE.
 +
        Only the last HID-CHANGE is relevant.  The previous-hop
 +
        agent will ignore HID-APPROVE or HID-REJECT messages to
 +
        previous CONNECT or HID-CHANGE messages.
  
RFC 1190                Internet Stream Protocol            October 1990
+
        A DISCONNECT can be sent instead of a HID-CHANGE, or a
 +
        REFUSE can be sent instead of a HID-APPROVE or HID-REJECT,
 +
        to terminate fatally the HID negotiation and the agent's
 +
        knowledge of the stream.
  
 +
        The A and D bits are used to change a HID, e.g., when adding
 +
        a new next-hop to a multicast group, in such a way that data
 +
        packets that are flowing through the network will not be
 +
        mishandled due to a race condition in processing the HID-
 +
        CHANGE messages between the previous-hop and its next-hops.
 +
        An implementation may choose to limit the number of
 +
        simultaneous HIDs associated with a stream, but must allow
 +
        at least two.
  
      Agent 2                  Agent C        Agent D    Agent 3
+
            A (bit 8) is used to indicate that the specified HID
 +
            should be included in the set of HIDs for the specified
 +
            Name.  When a HID is added, the acknowledging HID-APPROVE
 +
            should contain a HID field whose contents is the HID just
 +
            added.
  
  1.  +----> CONNECT B ------------------------------------>+
+
             D (bit 9) is used to indicate that the specified HID
              <RVLId=0><SVLId=24>                            V
+
            should be removed from the set of HIDs for the specified
  2.          <Ref=260><HID=4800>                    (Check HID Table)
+
            NameWhen a HID is deleted, the acknowledging HID-
              <Mcast=224.1.18.216,             (4800 busy, 4801-4810 ok)
+
            APPROVE should contain a HID field whose contents is
              01:00:5E:01:12:d8>                            V
+
            zeroNote that the Reference field may be used to
  3.  +<---- HID-REJECT <-----------------------------------+
+
            determine the HID that has been deleted.
      |      <RVLId=24><SVLId=33>
 
      |      <Ref=260><HID=4824>
 
      V      <FreeHIDs=4824:7FE00000>
 
  4.  (find common HID 4810)
 
      V
 
  5.  +->+-> HID-CHANGE ----------------------------------->+
 
          |  <RVLId=33><SVLId=24>                          |
 
          V  <Ref=262><HID=4810>                            |
 
  6.      +-> HID-CHANGE-ADD ------------------->+          |
 
          |  <RVLId=64><SVLId=26>              |          V
 
  7.      V  <Ref=263><HID=4810>                |  (Check HID Table)
 
  8.      +-> HID-CHANGE-ADD ---->+              |    (4801-4815 ok)
 
              <RVLId=54><SVLId=25>|              V          |
 
  9.          <Ref=265><HID=4810> V      (Check HID Table)   |
 
  10.                    (Check HID Table) (4810 busy)      |
 
                            (4801-4812 ok) (4801-4807 ok)    |
 
                                  V              |          |
 
  11.    +<- HID-APPROVE <-------+              |          |
 
          |  <RVLId=25><SVLId=54>              |          |
 
          |  <Ref=265><HID=4810>                |          |
 
          V  <FreeHIDs=4810:7FD8000>            V          |
 
  12.    +<- HID-REJECT <-----------------------+          |
 
          |  <RVLId=26><SVLId=64>                          |
 
          |  <Ref=263><HID=4810>                            |
 
          V  <FreeHIDs=4810:7F000000>                      V
 
  13+<-+<- HID-APPROVE <----------------------------------+
 
      |      <RVLId=24><SVLId=33>
 
      |      <Ref=262><HID=4810>
 
      V      <FreeHIDs=4810:7FDF0000>
 
  14.  +->+-> HID-CHANGE-DELETE ---------------------------->+
 
      |  |  <RVLId=33><SVLId=24>                          |
 
      |  V  <Ref=266><HID=4810>                            |
 
  15.  |  +-> HID-CHANGE-DELETE ->+                          |
 
      |      <RVLId=54><SVLId=25>|                          |
 
      |      <Ref=268><HID=4810> V                          |
 
  16.  |  +<- HID-APPROVE --------+                          |
 
      |      <RVLId=25><SVLId=54>                          |
 
      |      <Ref=268><HID=0>                              V
 
  17|  +<- HID-APPROVE -----------------------------------+
 
      |      <RVLId=24><SVLId=33>
 
      V      <Ref=266><HID=0>
 
  18. (find common HID 4801)
 
  
                Figure 20. Multicast HID Re-Negotiation (part 1)
+
            If neither bit is set, the specified HID should replace
 +
            that currently in use for the specified Name.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 11  |A|D|    0    |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |              HID              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                              0                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
CIP Working Group                                           
+
              Figure 50.  HID-CHANGE Control Message
  
RFC 1190                Internet Stream Protocol            October 1990
+
      4.2.3.13.        HID-REJECT
  
 +
        HID-REJECT (OpCode = 13) is used as an acknowledgment that a
 +
        CONNECT or HID-CHANGE was received and is being processed,
 +
        but means that the HID contained in the CONNECT or HID-
 +
        CHANGE is not acceptable.  Upon receipt of this message the
 +
        agent that issued the CONNECT or HID-CHANGE must now issue a
 +
        HID-CHANGE to attempt to find a suitable HID.  The HID-
 +
        CHANGE can cause another HID-REJECT but eventually the HID-
 +
        CHANGE must be acknowledged with a HID-APPROVE to end
 +
        successfully the HID negotiation.  The agent that issued the
 +
        HID-REJECT may not issue an ACCEPT before it has found an
 +
        acceptable HID.
  
      Agent 2                  Agent C        Agent D    Agent 3
+
        Since a HID-REJECT might be the first response from a next-
 +
        hop on a control link, the SVLId field may be the first
 +
        source of the Virtual Link Identifier to be used in the
 +
        RVLId field of subsequent control messages sent to that
 +
        next-hop.
  
  18.  (find common HID 4801)
+
        Either agent may terminate the negotiation by issuing either
      V
+
        a DISCONNECT or a REROUTEThe agent that issued the HID-
  19+->+-> HID-CHANGE ----------------------------------->+
+
        REJECT may issue a REFUSE, or REROUTE at any time after the
          |  <RVLId=33><SVLId=24>                          |
+
        HID-REJECTIn this case, the stream cannot be created, the
          V  <Ref=270><HID=4801>                            |
+
        HID negotiation need not proceed, and the previous-hop need
  20.    +-> HID-CHANGE-ADD ------------------->+          |
+
        not transmit any further messages; any further messages
          |  <RVLId=64><SVLId=26>              |          V
+
        that are received should be ignored.
  21.    V  <Ref=273><HID=4801>                |  (Check HID Table)
 
  22.    +-> HID-CHANGE-ADD ---->+              |    (4801-4815 ok)
 
              <RVLId=54><SVLId=25>|              V          |
 
  23.        <Ref=274><HID=4801> V      (Check HID Table)  |
 
  24.                    (Check HID Table)(4801-4807 ok)    |
 
                            (4801-4812 ok)      |          |
 
                                  V              |          |
 
  25.    +<- HID-APPROVE <-------+              |          |
 
          |  <RVLId=25><SVLId=54>              |          |
 
          |  <Ref=274><HID=4801>                |          |
 
          V  <FreeHIDs=4801:3FF80000>          V          |
 
  26.    +<- HID-APPROVE <----------------------+          |
 
          |  <RVLId=26><SVLId=64>                          |
 
          |  <Ref=273><HID=4801>                            |
 
          V  <FreeHIDs=4801:3F000000>                      V
 
  27.  +<-+<- HID-APPROVE <----------------------------------+
 
      |      <RVLId=24><SVLId=33>
 
      |      <Ref=270><HID=4801>
 
      V      <FreeHIDs=4801:3FFF0000>
 
  28(switch data stream to HID 4801, drop 4800)
 
      V
 
  29.  +->+-> HID-CHANGE-DELETE ---------------->+
 
          |  <RVLId=64><SVLId=26>              |
 
          V  <Ref=275><HID=4800>                |
 
  30.    +-> HID-CHANGE-DELETE ->+              |
 
              <RVLId=54><SVLId=25>|              |
 
              <Ref=277><HID=4800> V              |
 
  31. +<-+<- HID-APPROVE --------+              |
 
      |      <RVLId=25><SVLId=54>              |
 
      V      <Ref=277><HID=0>                  V
 
  32. +<-+<- HID-APPROVE -----------------------+
 
      |      <RVLId=26><SVLId=64>
 
      V      <Ref=275><HID=0>
 
      (all parties have now agreed to use HID 4801)
 
  
                Figure 20. Multicast HID Re-Negotiation (part 2)
+
        The optional FreeHIDs parameter provides the previous-hop
 +
        agent with hints about what HIDs would have been acceptable;
 +
        see Section 4.2.2.4 (page 84).
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 13  |      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |          RejectedHID          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                              0                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      FreeHIDs Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
              Figure 51.  HID-REJECT Control Message
  
 +
      4.2.3.14.        NOTIFY
  
 +
        NOTIFY (OpCode = 14) is issued by a an agent to inform other
 +
        agents, the origin, or target(s) of events that may be
 +
        significant.  The action taken by the receiver of a NOTIFY
 +
        depends on the ReasonCode.  Possible events are suspected
 +
        routing problems or resource allocation changes that occur
 +
        after a stream has been established.  These changes occur
 +
        when network components fail and when competing streams
 +
        preempt resources previously reserved by a lower precedence
 +
        stream.  We also anticipate that NOTIFY can be used in the
 +
        future when additional resources become available, as is the
 +
        case when network components recover or when higher
 +
        precedence streams are deleted.
  
 +
        NOTIFY may contain a FlowSpec that reflects that revised
 +
        guarantee that can be promised to the stream.  NOTIFY may
 +
        also identify those targets that are affected by the change.
 +
        In this way, NOTIFY is similar to ACCEPT.
  
 +
        NOTIFY may be relayed by the ST agents back to the origin,
 +
        along the path established by the CONNECT but in the reverse
 +
        direction.  It is up to the origin to decide whether a
 +
        CHANGE should be submitted.
  
 +
        When NOTIFY is received at the origin, the application
 +
        should be notified of the target and the change in resources
 +
        allocated along the path to it, as specified in the FlowSpec
 +
        contained in the NOTIFY message.  The application may then
 +
        use the information to either adjust or terminate the
 +
        portion of the stream to each affected target.
  
CIP Working Group                                           
+
        The NOTIFY may be propagated beyond the previous-hop or
 +
        next-hop agent; it must be acknowledged with an ACK.
  
RFC 1190                Internet Stream Protocol            October 1990
+
            Reference contains a number assigned by the agent sending
 +
            the NOTIFY for use in the acknowledging ACK.
  
 +
            ReasonCode identifies the reason for the notification.
  
        3.7.4.1.        Subset
+
            LnkReference, when non-zero, is the Reference number from
 +
            a command that is the subject of the notification.
  
            The above mechanism can operate exactly as described even if
+
             HID is present when the notification is related to a HID.
            the ST agents do not all use the entire 16 bits of the HID.
 
            A low capacity ST agent that cannot support a large number
 
            of simultaneous streams may use only some of the bits in the
 
             HID, say for example the low order byte.  This may allow
 
            this disadvantaged agent to use smaller internal data
 
            structures at the expense of causing HID collisions to occur
 
            more often.  However, neither the disadvantaged agent's
 
            previous-hop nor its next-hops need be aware of its
 
            limitations.  In the HID negotiation, the negotiators still
 
            exchange a 16-bit quantity.
 
  
 +
            Name is present when the notification is related to a
 +
            stream.
  
      3.7.5.        IP Encapsulation of ST
+
            NextHopIPAddress is an optional parameter and contains
 
+
            the IP address of a suggested next-hop ST agent.
        ST packets may be encapsulated in IP to allow them to pass
 
        through routers that don't support the ST Protocol.  Of course,
 
        ST resource management is precluded over such a path, and
 
        packet overhead is increased by encapsulation, but if the
 
        performance is reasonably predictable this may be better than
 
        not communicating at all.  IP encapsulation may also be
 
        required either for enhanced security (see Section 3.7.8 (page
 
        67)) or for user-space implementations of ST in hosts that
 
        don't allow demultiplexing on the IP Version Number field (see
 
        Section 4 (page 75)), but do allow access to raw IP packets.
 
 
 
        IP-encapsulated ST packets begin with a normal IP header.  Most
 
        fields of the IP header should be filled in according to the
 
        same rules that apply to any other IP packet.  Three fields of
 
        special interest are:
 
 
 
          o  Protocol is 5 to indicate an ST packet is enclosed, as
 
            opposed to TCP or UDP, for example.  The assignment of
 
            protocol 5 to ST is an arranged coincidence with the
 
            assignment of IP Version 5 to ST [18].
 
  
          o  Destination Address is that of the next-hop ST agent.
+
            TargetList is present when the notification is related to
            This may or may not be the target of the ST stream.
+
            one or more targets.
            There may be an intermediate ST agent to which the
 
            packet should be routed to take advantage of service
 
            guarantees on the path past that agent.  Such an
 
            intermediate agent would not be on a directly-connected
 
            network (or else IP encapsulation wouldn't be needed),
 
            so it would probably not be listed in the normal routing
 
            table.  Additional routing mechanisms, not defined here,
 
            will be required to learn about such agents.
 
  
           o  Type-of-Service may be set to an appropriate value for
+
0                  1                  2                  3
            the service being requested (usually low delay, high
+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 14  |      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |          ReasonCode           |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                          ErroredPDU                          :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      FlowSpec Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
CIP Working Group                                           
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        HID Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
RFC 1190                Internet Stream Protocol            October 1990
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                  NextHopIPAddress Parameter                  !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        throughput, normal reliability).  This feature is not
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        implemented uniformly in the Internet, so its use can't be
+
:                    RecordRoute Parameter                    :
        precisely defined here.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        Since there can be no guarantees made about performance across
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        a normal IP network, the ST agent that will encapsulate should
+
:                      TargetList Parameter                    :
        modify the Desired FlowSpec parameters when the stream is being
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        established to indicate that performance is not guaranteed.  In
 
        particular, Reliability should be set to the minimum value
 
        (1/256), and suitably large values should be added to the
 
        Accumulated Mean Delay and Accumulated Delay Variance to
 
        reflect the possibility that packets may be delayed up to the
 
        point of discard when there is network congestion.  A suitably
 
        large value is 255 seconds, the maximum packet lifetime as
 
        defined by the IP Time-to-Live field.
 
  
        IP encapsulation adds little difficulty for the ST agent that
+
            Figure 52NOTIFY Control Message
        receives the packetThe IP header is simply removed, then the
 
        ST header is processed as usual.
 
  
        The more difficult part is during setup, when the ST agent must
+
      4.2.3.15.       REFUSE
        decide whether or not to encapsulate. If the next-hop ST agent
 
        is on a remote network and the route to that network is through
 
        a router that supports IP but not ST, then encapsulation is
 
        required. As mentioned in Section 3.8.1 (page 69), routing
 
        table entries must be expanded to indicate whether the router
 
        supports ST.
 
  
         On forwarding, the (mostly constant) IP Header must be inserted
+
         REFUSE (OpCode = 15) is issued by a target that either does
         and the IP checksum appropriately updated.
+
        not wish to accept a CONNECT message or wishes to remove
 +
        itself from an established stream.  It might also be issued
 +
        by an intermediate agent in response to a CONNECT or CHANGE
 +
        either to terminate fatally a failing HID negotiation, to
 +
        terminate a routing loop, or when a satisfactory next-hop to
 +
        a target cannot be found.  It may also be a separate command
 +
        when an existing stream has been preempted by a higher
 +
        precedence stream or an agent detects the failure of a
 +
        previous-hop, next-hop, or the network between them.  In all
 +
        cases, the TargetList specifies the targets that are
 +
        affected by the condition.  Each REFUSE must be acknowledged
 +
         by an ACK.
  
         On a directly connected network, though, one might want to
+
         The REFUSE is relayed by the agents from the originating
         encapsulate only when sending to a particular destination host
+
        agent to the origin (or intermediate agent that created the
         that does not allow demultiplexing on the IP Version Number
+
         CONNECT or CHANGE) along the path traced by the CONNECT.
         field.  This requires the routing table to include host-route
+
        The agent receiving the REFUSE will process it differently
         as well as network-route entries.  Host-route entries might
+
         depending on the condition that caused it, as specified in
         require static definition if the hosts do not participate in
+
         the ReasonCode field.  In some cases, such as if a next-hop
         the routing protocolsIf packet size is not a critical
+
         cannot obtain resources, the agent can release any resources
         performance factor, one solution is always to encapsulate on
+
         reserved exclusively for transmissions in the stream in
         the directly connected network whenever some hosts require
+
         question to the target specified in the TargetList, and the
         encapsulation.  Those that don't require the encapsulation
+
        previous-hop can attempt to find an alternate routeIn
         should be able to remove it upon reception.
+
         some cases, such as a routing failure, the previous-hop
 +
         cannot determine where the failure occurred, and must
 +
         propagate the REFUSE back to the origin, which can attempt
 +
         recovery of the stream by issuing a new CONNECT.
  
 +
        No special effort is made to combine multiple REFUSE
 +
        messages since it is considered most unlikely that separate
 +
        REFUSEs will happen to both pass through an agent at the
 +
        same time and be easily combined, e.g., have identical
 +
        ReasonCodes and parameters.
  
         3.7.5.1.        IP Multicasting
+
         Since a REFUSE might be the first response from a next-hop
 +
        on a control link, the SVLId field may be the first source
 +
        of the Virtual Link Identifier to be used in the RVLId field
 +
        of subsequent control messages sent to that next-hop.
  
             If an ST agent must use IP encapsulation to reach multiple
+
             Reference contains a number assigned by the agent sending
             next-hops toward different targets, then either the packet
+
             the REFUSE for use in the acknowledging ACK.
            must be replicated for transmission to each next-hop, or IP
 
            multicasting [6] may be used if it is implemented in the
 
            next-hop ST agents and in the intervening IP routers.
 
  
 +
            LnkReference is either the Reference number from the
 +
            corresponding CONNECT or CHANGE, if it is the result of
 +
            such a message, or zero when the REFUSE was originated as
 +
            a separate command.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 15  |      0      |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId            |            SVLId            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |          ReasonCode          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                      DetectorIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                    TargetList Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
CIP Working Group                                           
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                          ErroredPDU                          :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
RFC 1190                Internet Stream Protocol            October 1990
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                    RecordRoute Parameter                    :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                      UserData Parameter                      :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
            This is analogous to using network-level service to
+
                Figure 53. REFUSE Control Message
            multicast to several next-hop agents on a directly connected
 
            network.
 
  
            When the stream is established, the collection of next-hop
+
      4.2.3.16.       STATUS
            ST agents must be set up as an IP multicast group.  It may
 
            be necessary for the ST agent that wishes to send the IP
 
            multicast to allocate a transient multicast group address
 
            and then tell the next-hop agents to join the group.  Use of
 
            the MulticastAddress parameter (see Section 4.2.2.7 (page
 
            86)) provides one way that the information may be
 
            communicated, but other techniques are possible. The
 
            multicast group address in inserted in the Destination
 
            Address field of the IP encapsulation when data packets are
 
            transmitted.
 
  
            A block of transient IP multicast addresses, 224.1.0.0 -
+
        STATUS (OpCode = 16) is used to inquire about the existence
            224.1.255.255, has been allocated for this purpose.  There
+
        of a particular stream identified by either a HID (H bit
            are 2^16 addresses in this block, allowing a direct mapping
+
        set) or Name (Name Parameter present).
            with 16-bit HIDs, if appropriate.  The mechanisms for
 
            allocating these addresses are not defined here.
 
  
            In addition, two permanent IP multicast addresses have been
+
        When a stream has been identified, a STATUS-RESPONSE is
            assigned to facilitate experimentation with exchange of
+
        returned that will contain the specified HID and/or Name but
            routing or other information among ST agentsThose
+
        no other parameters if the specified stream is unknown, or
            addresses are:
+
        will otherwise contain the current HID(s), Name, FlowSpec,
 +
        TargetList, and possibly Group(s) of the streamNote that
 +
        if a stream has no current HID, the HID field in the
 +
        STATUS-RESPONSE will contain zero;  it will contain the
 +
        first, or only, HID if a valid HID exists; additional valid
 +
        HIDs will be returned in HID parameters.
  
              224.0.0.7    All ST routers
+
        Use of STATUS is intended for diagnostic purposes and to
              224.0.0.8    All ST hosts
+
        assist in stream cleanup operations. Note that if both a
 +
        HID and Name are specified, but they do not correspond to
 +
        the same stream, an ERROR-IN-REQUEST with the appropriate
 +
        reason code (InconsistHID) would be returned.
  
            An ST router is an ST agent that can pass traffic between
+
        It is possible in cases of multiple failures or network
            attached networks; an ST host is an ST agent that is
+
        partitioning for an ST agent to have information about a
            connected to a single network or is not permitted to pass
+
        stream after the stream has either ceased to exist or has
            traffic between attached networksNote that the range of
+
        been rerouted around the agent. When an agent concludes
            these multicasts is normally just the attached local
+
        that a stream has not been used for a period of time and
            network, limited by setting the IP time-to-live field to 1
+
        might no longer be valid, it can probe the stream's
            (see [6]).
+
        previous-hop or next-hop(s) to see if they believe that the
 +
        stream still exists through the interrogating agentIf
 +
        not, those hops would reply with a STATUS-RESPONSE that
 +
        contains the HID and/or Name but no other parameters;
 +
        otherwise, if the stream is still valid, the hops would
 +
        reply with the parameters of the stream.
  
 +
            H (bit 8) is used to indicate whether (when 1) or not
 +
            (when 0) a HID is present in the HID field.
  
      3.7.6.        Retransmission
+
            Q (bit 9) is set to one (1) for remote diagnostic
 +
            purposes when the receiving agent should return a
 +
            stream's parameters, whether or not the source of the
 +
            message is believed to be a previous-hop or next-hop in
 +
            the specified stream. Note that this use has potential
 +
            for disclosure of sensitive information.
  
        The ST Control Message Protocol is made reliable through use of
+
            RVLId and SVLId may either or both be zero when STATUS is
        retransmission when an expected acknowledgment is not received
+
            used for diagnostic purposes.
        in a timely manner.  The problem of when to send a
 
        retransmission has been studied for protocols such as TCP [2]
 
        [10] [11]. The problem should be simpler for ST since control
 
        messages usually only have to travel a single hop and they do
 
        not contain very much data.  However, the algorithms developed
 
        for TCP are sufficiently simple that their use is recommended
 
        for ST as well;  see [2].  An implementor might, for example,
 
        choose to keep statistics separately for each
 
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|  OpCode = 16  |H|Q|    0    |          TotalBytes          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            RVLId/0            |            SVLId/0            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|          Reference          |        LnkReference          |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                        SenderIPAddress                      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |            HID/0            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                              0                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
CIP Working Group                                           
+
                Figure 54.  STATUS Control Message
  
RFC 1190                Internet Stream Protocol            October 1990
+
      4.2.3.17.        STATUS-RESPONSE
  
 +
        STATUS-RESPONSE (OpCode = 17) is the reply to a STATUS
 +
        message.  If the stream specified in the STATUS message is
 +
        not known, the STATUS-RESPONSE will contain the specified
 +
        HID and/or Name but no other parameters.  It will otherwise
 +
        contain the current HID(s), Name, FlowSpec, TargetList, and
 +
        possibly Group of the stream.  Note that if a stream has no
 +
        current HID, the H bit in the STATUS-RESPONSE will be zero.
 +
        The HID field will contain the first, or only, HID if a
 +
        valid HID exists; additional valid HIDs will be returned in
 +
        HID parameters.
  
        neighboring ST agent, or combined into a single statistic for
+
            H (bit 8) is used to indicate whether (when 1) or not
        an attached network.
+
            (when 0) a HID is present in the HID field.
  
         Estimating the packet round-trip time (RTT) is a key function
+
0                  1                  2                  3
         in reliable transport protocols such as TCP.  Estimation must
+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        be dynamic, since congestion and resource contention result in
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        varying delays.  If RTT estimates are too low, packets will be
+
|  OpCode = 17  |H|Q|    0    |          TotalBytes         |
        retransmitted too frequently, wasting network capacity.  If RTT
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        estimates are too high, retransmissions will be delayed
+
|            RVLId/0            |            SVLId/0            |
        reducing network throughput when transmission errors occur.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        Article [11] identifies problems that arise when RTT estimates
+
|          Reference          |        LnkReference         |
        are poor, outlines how RTT is used and how retransmission
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        timeouts (RTO) are estimated, and surveys several ways that RTT
+
|                        SenderIPAddress                      |
        and RTO estimates can be improved.
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|            Checksum          |            HID/0            |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|                              0                              |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        Name Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        Note the HELLO/ACK mechanism described in Section 3.7.1.2 (page
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        49) can give an estimate of the RTT and its variance.  These
+
:                      FlowSpec Parameter                      :
        estimates are also important for use with the delay and delay
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        variance entries in the FlowSpec.
 
  
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
:                        Group Parameter                        :
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
      3.7.7.        Routing
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
!                        HID Parameter                        !
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
        ST requires access to routing information in order to select a
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        path from an origin to the destination(s).  However, routing is
+
:                      TargetList Parameter                    :
        considered to be a separate issue and neither the routing
+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        algorithm nor its implementation is specified here.  ST should
 
        operate equally well with any reasonable routing algorithm.
 
  
        While ST may be capable of using several types of information
+
                Figure 55STATUS-RESPONSE Control Message
        that are not currently available, the minimal information
 
        required is that provided by IP, namely the ability to find an
 
        interface and next hop router for a specified IP destination
 
        address and Type of ServiceMethods to make more information
 
        available and to use it are left for further study.  For
 
        initial ST implementations, any routing information that is
 
        required but not automatically provided will be assumed to be
 
        manually configured into the ST agents.
 
  
 +
4.3.      Suggested Protocol Constants
  
      3.7.8.       Security
+
  The ST Protocol uses several fields that must have specific values
 +
  for the protocol to work, and also several values that an
 +
  implementation must select. This section specifies the required
 +
  values and suggests initial values for others. It is recommended
 +
  that the latter be implemented as variables so that they may be
 +
  easily changed when experience indicates better values.
 +
  Eventually, they should be managed via the normal network
 +
  management facilities.
  
        The ST Protocol by itself does not provide security services.
+
  ST uses IP Version Number 5.
        It is more vulnerable to misdelivery and denial of service than
 
        IP since the ST Header only carries a 16-bit HID for
 
        identification purposes.  Any information, such as source and
 
        destination addresses, which a higher-layer protocol might use
 
        to detect misdelivery are the responsibility of either the
 
        application or higher-layer protocol.
 
  
 +
  When encapsulated in IP, ST uses IP Protocol Number 5.
  
 +
    Value  ST Command Message Name      Value    ST Element Name
 +
  ------- -----------------------      ------- ---------------------
  
 +
      1    ACCEPT                          1    ErroredPDU
 +
      2    ACK                            2    FlowSpec
 +
      3    CHANGE                          3    FreeHIDs
 +
      4    CHANGE-REQUEST                  4    Group
 +
      5    CONNECT                        5    HID
 +
      6    DISCONNECT                      6    MulticastAddress
 +
      7    ERROR-IN-REQUEST                7    Name
 +
      8    ERROR-IN-RESPONSE              8    NextHopIPAddress
 +
      9    HELLO                          9    Origin
 +
    10    HID-APPROVE                    10    OriginTimestamp
 +
    11    HID-CHANGE                    11    RecordRoute
 +
    12    HID-CHANGE-REQUEST            12    RFlowSpec
 +
    13    HID-REJECT                    13    RGroup
 +
    14    NOTIFY                        14    RHID
 +
    15    REFUSE                        15    RName
 +
    16    STATUS                        16    SrcRoute, IP Loose
 +
    17    STATUS-RESPONSE                17    SrcRoute, IP Strict
 +
                                          18    SrcRoute, ST Loose
 +
                                          19    SrcRoute, ST Strict
 +
                                          20    TargetList
 +
                                          21    UserData
  
 +
  A good choice for the minimum number of bits in the FreeHIDBitMask
 +
  element of the FreeHIDs parameter is not yet known.  We suggest a
 +
  minimum of 64 bits, i.e., N in Figure 25 has a value of two (2).
  
CIP Working Group                                           
+
  HID value zero (0) is reserved for ST Control Messages.  HID
 +
  values 1-3 are reserved for future use.
  
RFC 1190                Internet Stream Protocol            October 1990
+
  VLId value zero (0) may only be used in the RVLId field of an ST
 +
  Control Message when the appropriate value has not yet been
 +
  received from the other end of the virtual link;' except for an
 +
  ERROR-IN-REQUEST or diagnostic message, the SVLId field may never
 +
  contain a value of zero except in a diagnostic message.  VLId
 +
  value 1 is reserved for use with HELLO messages by those agents
 +
  whose implementation wishes to have all HELLOs so identified.
 +
  VLId values 2-3 are reserved for future use.
  
 +
  The following permanent IP multicast addresses have been assigned
 +
  to ST:
  
        ST is less prone to traffic analysis than IP since the only
+
      224.0.0.7    All ST routers
        identifying information contained in the ST Header is a hop-
+
      224.0.0.8    All ST hosts
        by-hop identifier (HID). However, the use of a HID is also
 
        what makes ST more vulnerable to denial of service since an ST
 
        agent has no reliable way to detect when bogus traffic is
 
        injected into, and thus consumes bandwidth from, a user's
 
        stream. Detection can be enhanced through use of per-interface
 
        forwarding tables and verification of local network source and
 
        destination addresses.
 
  
        We envision that applications that require security services
+
  In addition, a block of transient IP multicast addresses,
        will use facilities, such as the Secure Digital Networking
+
  224.1.0.0 - 224.1.255.255, has been allocated for ST multicast
        System (SDNS) layer 3 Security Protocol (SP3/D) [19] [20]In
+
  groupsNote that in the case of Ethernet, an ST Multicast
        such an environment, ST PDUs would first be encapsulated in an
+
  address of 224.1.cc.dd maps to an Ethernet Multicast address of
        IP Header, using IP Protocol 5 (ST) as described in Section
+
  01:00:5E:01:cc:dd (see [6]).
        3.7.5 (page 64).  These IP datagrams would then be secured
 
        using SP3/D, which results in another IP Protocol 5 PDU that
 
        can be passed between ST agents.
 
  
        This memo does not specify how an application invokes security
+
  SCMP uses retransmission to effect reliability and thus has
        services.
+
  several "retransmission timers".  Each "timer" is modeled by an
 +
  initial time interval (ToXxx), which gets updated dynamically
 +
  through measurement of control traffic, and a number of times
 +
  (NXxx) to retransmit a message before declaring a failure.  All
 +
  time intervals are in units of milliseconds.
  
 +
    Value  Timeout  Name                      Meaning
 +
  ------- ---------------------- ----------------------------------
  
  3.8.      ST Service Interfaces
+
    1000  ToAccept              Initial hop-by-hop timeout for
 +
                                  acknowledgment of ACCEPT
  
      ST has several interfaces to other modules in a communication
+
        3 NAccept                ACCEPT retries before failure
      system. ST provides its services to applications or transport-
 
      level protocols through its "upper" interface (or SAP).  ST in
 
      turn uses the services provided by network layers, management
 
      functions (e.g., address translation and routing), and IP.  The
 
      interfaces to these modules are described in this section in the
 
      form of subroutine calls.  Note that this does not mean that an
 
      implementation must actually be implemented as subroutines, but is
 
      instead intended to identify the information to be passed between
 
      the modules.
 
  
      In this style of outlining the module interfaces, the information
+
    1000  ToConnect              Initial hop-by-hop timeout for
      passed into a module is shown as arguments to the subroutine call.
+
                                  acknowledgment of CONNECT
      Return information and/or success/failure indications are listed
 
      after the arrow ("->") that follows the subroutine call.  In
 
      several cases, a list of values must either be passed to or
 
      returned from a module interface.  Examples include a set of
 
      target addresses, or the mappings from a target list to a set of
 
      next hop addresses that span the route to the originally listed
 
      targets.  When such a list is appropriate, the values repeated for
 
      each list element are bracketed and an asterisk is added to
 
      indicate that zero, one, or many list elements can be passed
 
      across the interface (e.g., "<target>*" means zero, one, or more
 
      targets).
 
  
 +
        5  NConnect              CONNECT retries before failure
  
 +
    1000  ToDisconnect          Initial hop-by-hop timeout for
 +
                                  acknowledgment of DISCONNECT
  
 +
      3  NDisconnect            DISCONNECT retries before
 +
                                  failure
  
 +
    Value  Timeout  Name                      Meaning
 +
  ------- ---------------------- ----------------------------------
  
CIP Working Group                                           
+
    1000  ToHIDAck              Initial hop-by-hop timeout for
 +
                                  acknowledgment of
 +
                                  HID-CHANGE-REQUEST
  
RFC 1190               Internet Stream Protocol            October 1990
+
        3  NHIDAck               HID-CHANGE-REQUEST retries
 +
                                  before failure
  
 +
    1000  ToHIDChange            Initial hop-by-hop timeout for
 +
                                  acknowledgment of HID-CHANGE
  
      3.8.1.        Access to Routing Information
+
        3 NHIDChange            HID-CHANGE retries before
 +
                                  failure
  
        The design of routing functions that can support a variety of
+
    1000 ToNotify              Initial hop-by-hop timeout for
        resource management algorithms is difficult. In this section
+
                                  acknowledgment of NOTIFY
        we suggest a set of preliminary interfaces suitable for use in
 
        initial experiments.  We expect that these interfaces will
 
        change as we gain more insight into how routing, resource
 
        allocation, and decision making elements are best divided.
 
  
        Routing functions are required to identify the set of potential
+
        3 NNotify                NOTIFY retries before failure
        routes to each destination site. The routing functions should
 
        make some effort to identify routes that are currently
 
        available and that meet the resource requirements. However,
 
        these properties need not be confirmed until the actual
 
        resource allocation and connection setup propagation are
 
        performed.
 
  
        The minimum capability required of the interface to routing is
+
    1000  ToRefuse              Initial hop-by-hop timeout for
        to identify the network interface and next hop toward a given
+
                                  acknowledgment of REFUSE
        target.  We expect that the traditional routing table will need
 
        to be extended to include information that ST requires such as
 
        whether or not a next hop supports ST, and, if so, whether or
 
        not IP encapsulation (see Section 3.7.5 (page 64)) is required
 
        to communicate with it.  In particular, host entries will be
 
        required for hosts that can only support ST through
 
        encapsulation because the IP software either is not capable of
 
        demultiplexing datagrams based on the IP Version Number field,
 
        or the application interface only supports access to raw IP
 
        datagrams.  This interface is illustrated by the function:
 
  
            FindNextHop( destination, TOS )
+
        3  NRefuse               REFUSE retries before failure
               -> result, < interface, next hop, ST-capable,
 
                  MustEncapsulate >*
 
  
        However, the resource management functions can best tradeoff
+
    1000 ToReroute              Timeout for receipt of ACCEPT or
        among alternative routes when presented with a matrix of all
+
                                  REFUSE from targets during
        potential routes. The matrix entry corresponding to a
+
                                  failure recovery
        destination and a next hop would contain the estimated
 
        characteristics of the corresponding pathway.  Using this
 
        representation, the resource management functions can quickly
 
        determine the next hop sets that cover the entire destination
 
        list, and compare the various parameters of the tradeoff
 
        between the guarantees that can be promised by each set.  An
 
        interface that returns a compressed matrix, listing the
 
        suitable routes by next hop and the destinations reachable
 
        through each, is illustrated by the function:
 
  
            FindNextHops( < destination >*, TOS )
+
        5  NReroute              CONNECT retries before failure
              -> result, < destination, < interface, next hop,
 
                  ST-capable, MustEncapsulate >* >*
 
  
 +
    5000  ToEnd2End              End-to-End timeout for receipt
 +
                                  of ACCEPT or REFUSE from targets
 +
                                  by origin
  
 +
        0  NEnd2End              CONNECT retries before failure
  
 +
    Value  Parameter  Name                    Meaning
 +
  ------- ---------------------- ----------------------------------
  
CIP Working Group                                           
+
      10  NHIDAbort              Number of rejected HID proposals
 +
                                  before aborting the HID
 +
                                  negotiation process
  
RFC 1190                Internet Stream Protocol            October 1990
+
    10000  HelloTimerHoldDown    Interval that Restarted bit must
 +
                                  be set after ST restart
  
 +
        5  HelloLossFactor        Number of consecutively missed
 +
                                  HELLO messages before declaring
 +
                                  link failure
  
        We hope that routing protocols will be available that propagate
+
    2000  DefaultRecoveryTimeout Interval between successive
        additional metrics of bandwidth, delay, bit/burst error rate,
+
                                  HELLOs to/from active neighbors
        and whether a router has ST capability.  However, propagating
 
        this information in a timely fashion is still a key research
 
        issue.
 
  
 +
        2  DefaultHelloFactor    HELLO filtering function factor
  
      3.8.2.        Access to Network Layer Resource Reservation
+
== Areas Not Addressed ==
  
        The resources required to reach the next-hops associated with
+
There are a number of issues that will need to be addressed in the
        the chosen routes must be allocatedThese allocations will
+
long run but are not addressed hereSome issues are network or
        generally be requested and released incrementallyAs the
+
implementation specificFor example, the management of multicast
        next-hop elements for the routes are chosen, the network
+
groups depends on the interface that a network provides to the ST
        resources between the current node and the next-hops must be
+
agent, and an UP/DOWN protocol based on ST HELLO messages depends on
        allocated.  Since the resources are not guaranteed to be
+
the details of the ST agents.  Both these examples may impact the ST
        available -- a network or node further down the path might have
+
implementations, but we feel it is inappropriate to specify them
        failed or needed resources might have been allocated since the
+
here.
        routing decisions where made -- some of these allocations may
 
        have to be released, another route selected, and a new
 
        allocation requested.
 
  
        There are four basic interface functions needed for the network
+
In other cases we feel that appropriate solutions are not clear at
        resource allocator.  The first checks to see if the required
+
this time.  The following are examples of such issues:
        resources are available, returning the likelihood that an
 
        ensuing resource allocation will succeed.  A probability of 0%
 
        indicates the resources are not available or cannot promise to
 
        meet the required guarantees.  Low probabilities indicate that
 
        most of the resource has been allocated or that there is a lot
 
        of contention for using the resource.  This call does not
 
        actually reserve the resources:
 
  
            ResourceProbe( requirements )
+
This document does not include a routing mechanism.  We do not feel
              -> likelihood
+
that a routing strategy based on minimizing the number of hops from
 +
the source to the destination is necessarily appropriate.  An
 +
alternative strategy is to minimize the consumption of internet
 +
resources within some delay constraints.  Furthermore, it would be
 +
preferable if the routing function were to provide routes that
 +
incorporated bandwidth, delay, reliability, and perhaps other
 +
characteristics, not just connectivity.  This would increase the
 +
likelihood that a selected route would succeed.  This requirement
 +
would probably cause the ST agents to exchange more routing
 +
information than currently implemented.  We feel that further
 +
research and experimentation will be required before an appropriate
 +
routing strategy is well enough defined to be incorporated into the
 +
ST specification.
  
        Another call reserves the resources:
+
Once the bandwidth for a stream has been agreed upon, it is not
 +
sufficient to rely on the origin to transmit traffic at that rate.
 +
The internet should not rely on the origin to operate properly.
 +
Furthermore, even if the origin sources traffic at the agreed rate,
 +
the packets may become aggregated unintentionally and cause local
 +
congestion.  There are several approaches to addressing this problem,
 +
such as metering the traffic in each stream as it passes through each
 +
agent.  Experimentation is necessary before such a mechanism is
 +
selected.
  
            ResourceReserve( requirements )
+
The interface between the agent and the network is very limited.  A
              -> result, reservation_id
+
mechanism is provided by which the ST layer can query the network to
 +
determine the likelihood that a stream can be supported.  However,
 +
this facility will require practical experience before its
 +
appropriate use is defined.
  
        The third call adjusts the resource guarantees:
+
The simplex tree model of a stream does not easily allow for using
 +
multiple paths to support a greater bandwidth.  That is, at any given
 +
point in a stream, the entire incoming bandwidth must be transmitted
 +
to the same next-hop in order to get to some target.  If the
 +
bandwidth isn't available along any single path, the stream cannot be
 +
built to that target.  It may be the case that the bandwidth is not
 +
available along a single path, but if the data
  
            ResourceAdjust( reservation_id, new requirements )
+
flow is split along multiple paths, and so multiple next-hops,
              -> result
+
sufficient bandwidth would be available.  As currently specified, the
 +
ST agent at the point where the multiple flows converge will refuse
 +
the second connection because it can only be interpreted as a routing
 +
failure.  A mechanism that allows multiple paths in a stream and can
 +
protect against routing failures has not been defined.
  
        The final call allows the resources to be released:
+
If sufficient bandwidth is not available, both preemption and
 +
rerouting are possible.  However, it is not clear when to use one or
 +
the other.  As currently specified, an ST agent that cannot obtain
 +
sufficient bandwidth will attempt to preempt lower precedence streams
 +
before attempting to reroute around the bottleneck.  This may lead to
 +
an undesirably high number of preemptions.  It may be that a higher
 +
precedence stream can be rerouted around lower precedence streams and
 +
still meet its performance requirements, whereas the preempted lower
 +
precedence streams cannot be reconstructed and still meet their
 +
performance requirements.  A simple and effective algorithm to allow
 +
a better decision has not been identified.
  
            ResourceRelease( reservation_id )
+
In case a stream cannot be completed, ST does not report to the
              -> result
+
application the nature of the trouble in any great detail.
 +
Specifically, the application cannot determine where the bottleneck
 +
is, whether the problem is permanent or transitory, or the likely
 +
time before the trouble may be resolved.  The application can only
 +
attempt to build the stream at some later time hoping that the
 +
trouble has been resolved.  Schemes can be envisioned by which
 +
information is relayed back to the application.  However, only
 +
practical experience can evaluate the kind of trouble that is most
 +
likely encountered and the nature of information that would be most
 +
useful to the application.
  
 +
A mechanism is also not defined for cases where a stream cannot be
 +
completed not because of lack of resources but because of an
 +
unexpected failure that results in an ERROR-IN-REQUEST message.  An
 +
ERROR-IN-REQUEST message is returned in cases when an ST agent issues
 +
a malformed control message to a neighbor.  Such an occurrence is
 +
unexpected and may be caused by a bad or incomplete ST
 +
implementation.  In some cases a message, such as a NOTIFY should be
 +
sent to the origin.  Such a mechanism is not defined because it is
 +
not clear what information can be extracted and what the origin
 +
should do.
  
 +
No special action is taken when a target is removed from a stream.
 +
Removing a target may also remove a bottleneck either in bandwidth,
 +
packet rate or packet size, but advantage of this opportunity is not
 +
taken automatically.  The application may initiate a change to the
 +
stream's characteristics, but it is not in the best position to do
 +
this because the application may not know the nature of the
 +
bottleneck.  The ST layer may have the best information, but a
  
 +
mechanism to do this may be very complex.  As a result, this concept
 +
requires further thought.
  
 +
An agent simply discards a stream's data packets if it cannot forward
 +
them.  The reason may be that the packets are too large or are
 +
arriving at too high a rate.  Alternative actions may include an
 +
attempt to do something with the packets, such as fragmenting them,
 +
or to notify the origin of the trouble.  Corrective measures may be
 +
too complex, so it may be preferable simply to notify the origin with
 +
a NOTIFY message.  However, if the incoming packet rate is causing
 +
congestion, then the NOTIFY messages themselves may cause more
 +
trouble.  The nature of the communication has yet to be defined.
  
 +
The FlowSpec includes a cost field, but its implementation has not
 +
been identified.  The units of cost can probably be defined
 +
relatively easily.  Cost of bandwidth can probably also be assigned.
 +
It is not clear how cost is assigned to other functions, such as high
 +
precedence or low delay, or how cost of the components of the stream
 +
are combined together.  It is clear that the cost to provide services
 +
will become more important in the near future, but it is not clear at
 +
this time how that cost is determined.
  
CIP Working Group                                           
+
A number of parameters of the FlowSpec are intended to be used as
 +
ranges, but some may be useful as discrete values.  For example, the
 +
FlowSpec may specify that bandwidth for a stream carrying voice
 +
should be reserved in a range from 16Kbps to 64Kbps because the voice
 +
codec has a variable coding rate.  However, the voice codec may be
 +
varied only among certain discrete values, such as 16Kbps, 32Kbps and
 +
64Kbps.  A stream that has 48Kbps of bandwidth is no better than one
 +
with 32Kbps.  The parameters of the FlowSpec where this may be
 +
relevant should optionally specify discrete values.  This is being
 +
considered.
  
RFC 1190                Internet Stream Protocol            October 1990
+
Groups are defined as a way to associate different streams, but the
 +
nature of the association is left for further study.  An example of
 +
such an association is to allow streams whose traffic is inherently
 +
not simultaneous to share the same allocated resources.  This may
 +
happen for example in a conference that has an explicit floor, such
 +
that only one site can generate video or audio traffic at any given
 +
time.  The grouping facility can be implemented based on this
 +
specification, but the implementation of the possible uses of groups
 +
will require new functionality to be added to the ST agents.  The
 +
uses for groups and the implementation to support them will be
 +
carried out as experience is gained and the need arises.
  
 +
We hope that the ST we here propose will act as a vehicle to study
 +
the use and performance of stream oriented services across packet
 +
switched networks.
  
      3.8.3.        Network Layer Services Utilized
+
                [This page intentionally left blank.]
  
        ST requires access to the usual network layer functions to send
+
== Glossary ==
        and receive packets and to be informed of network status
 
        information.  In addition, it requires functions to enable and
 
        disable reception of multicast packets.  Such functions might
 
        be defined as:
 
  
            JoinLocalGroup( network level group-address )
+
appropriate reason code
              -> result, multicast_id
+
  This phrase refers to one or perhaps a set of reason codes that
 +
  indicate why a particular action is being taken.  Typically,
 +
  these result from detection of errors or anomalous conditions.
 +
  It can also indicate that an application component or agent has
 +
  presented invalid parameters.
  
            LeaveLocalGroup( network level group-address )
+
DefaultRecoveryTimeout
              -> result
+
  The DefaultRecoveryTimeout is maintained by each ST agent.  It
 +
  indicates the default time interval to use for sending HELLO
 +
  messages.
  
            RecvNet( SAP )
+
downstream
              -> result, src, dst, len, BufPTR )
+
  The direction in a stream from an origin toward its targets.
  
            SendNet( src, dst, SAP, len, BufPTR )
+
element
              -> result
+
  The fields and parameters of the ST control messages are
 +
  collectively called elements.
  
            GetNotification( SAP )
+
FlowSpec
              -> result, infop
+
  The Flow Specification, abbreviated "FlowSpec" is used by an
 +
  application to specify required and desired characteristics of
 +
  the stream.  The FlowSpec specifies bandwidth, delay, and
 +
  reliability parameters.  Both minimal requirements and desired
 +
  characteristics are included.  This information is then used to
 +
  guide route selection and resource allocation decisions.  The
 +
  desired vs. required characteristics are used to guide tradeoff
 +
  decisions among competing stream requests.
  
 +
group
 +
  A set of related streams can be associated as a group.  This is
 +
  done by generating a Group Name and assigning it to each of the
 +
  related streams.  The grouping information can then be used by
 +
  the ST agents in making resource management and other control
 +
  decisions.  For example, when preemption is necessary to
 +
  establish a high precedence stream, we can exploit the group
 +
  information to minimize the number of stream groups that are
 +
  preempted.
  
      3.8.4.       IP Services Utilized
+
Group Name
 +
  The Group Name is used to indicate that a collection of streams
 +
  are related. A Group Name is structured to ensure that it is
 +
  unique across all hosts:  it includes the address of the host
 +
  where it was generated combined with a unique number generated
 +
  by that host. A timestamp is added to ensure that the overall
 +
  name is unique over all time. (A Group Name has the same format
 +
  as a stream Name.)
  
        Since ST packets might be sent or received using IP
+
HelloLossFactor
        encapsulation, IP level routines to join and leave multicast
+
  The HelloLossFactor is a parameter maintained by each ST agent.
        groups are required in addition to the usual services defined
+
  It identifies the expected number of consecutive HELLO messages
        in the IP specification (see the IP specification [2] [15] and
+
  typically lost due to transient factors.  Thus, an agent will be
        the IP multicast specification [6] for details).
+
  assumed to be down after we miss more than HelloLossFactor
 +
  messages.
  
            JoinHostGroup( IP level group-address, interface )
+
HelloTimer
              -> result, multicast_id
+
  The HelloTimer is a millisecond timer maintained by each ST
 +
  agent.  It is included in each HELLO message.  It represents the
 +
  time since the agent was restarted, modulo the precision of the
 +
  field.  It is used to detect variations in the delay between the
 +
  two agents, by comparing the arrival interval of two HELLO
 +
  messages to the difference between their HelloTimer fields.
  
            LeaveHostGroup( IP level group-address, interface )
+
HelloTimerHoldDown
              -> result
+
  The HelloTimerHoldDown value is maintained by each ST agent.
 +
  When an ST agent is restarted, it will set the "Restarted" bit
 +
  in all HELLO messages it sends for HelloTimerHoldDown seconds.
  
            GET_SRCADDR( remote IP addr, TOS )
+
HID
              -> local IP address
+
  The Hop IDentifier, abbreviated as HID, is a numeric key stored
 +
  in the header of each ST packet.  It is used by an ST agent to
 +
  associate the packet with one of the incoming hops managed by
 +
  the agent.  It can be used by receiving agent to map to
 +
  the set of outgoing next-hops to which the message should be
 +
  forwarded.  The HID field of an ST packet will generally need to
 +
  be changed as it passes through each ST agent since there may be
 +
  many HIDs associated with a single stream.
  
            SEND( src, dst, prot, TOS, TTL, BufPTR, len, Id, DF,
+
hop
                  opt )
+
  A "hop" refers to the portion of a stream's path between two
              -> result
+
  neighbor ST agents.  It is usually represented by a physical
 +
  network.  However, a multicast hop can connect a single ST agent
 +
  to several next-hop ST agents.
  
            RECV( BufPTR, prot )
+
host agents
              -> result, src, dst, SpecDest, TOS, len, opt
+
  Synonym for host ST agents.
  
            GET_MAXSIZES( local, remote, TOS )
+
host ST agents
              -> MMS_R, MMS_S
+
  Host ST agents are ST agents that provide services to higher
 +
  layer protocols and applications.  The services include methods
 +
  for sourcing data from and sinking data to the higher layer or
 +
  application, and methods for requesting and modifying streams.
  
 +
intermediate agents
 +
  Synonym for intermediate ST agents.
  
 +
intermediate ST agents
 +
  Intermediate ST agents are ST agents that can forward ST
 +
  packets between the networks to which they are attached.
  
 +
MTU
 +
  The abbreviation for Maximum Transmission Unit, which is the
 +
  maximum packet size in bytes that can be accepted by a given
 +
  network for transmission.  ST agents determine the maximum
 +
  packet size for a stream so that data written to the stream can
 +
  be forwarded through the networks without fragmentation.
  
CIP Working Group                                           
+
multi-destination simplex
 +
  The topology and data flow of ST streams are described as being
 +
  multi-destination simplex:  all data flowing on the stream
 +
  originates from a single origin and is passed to one or more
 +
  destination targets.  Only control information, invisible to the
 +
  application program, ever passes in the upstream direction.
  
RFC 1190                Internet Stream Protocol            October 1990
+
NAccept
 +
  NAccept is an integer parameter maintained by each ST agent.  It
 +
  is used to control retransmission of an ACCEPT message.  Since
 +
  an ACCEPT request is relayed by agents back toward the origin,
 +
  it must be acknowledged by each previous-hop agent.  If this ACK
 +
  is not received within the appropriate timeout interval, the
 +
  request will be resent up to NAccept times before giving up.
  
 +
Name
 +
  Generally refers to the name of a stream.  A stream Name is
 +
  structured to ensure that it is unique across all hosts: it
 +
  includes the address of the host where it was generated combined
 +
  with a unique number generated at that host.  A timestamp is
 +
  added to ensure that the overall Name is unique over all time.
 +
  (A stream Name has the same format as a Group Name.)
  
            ADVISE_DELIVPROB( problem, local, remote, TOS )
+
NConnect
              -> result
+
  NConnect is an integer parameter maintained by each ST agent.
 +
  It is used to control retransmission of a CONNECT message.  A
 +
  CONNECT request must be acknowledged by each next-hop agent as
 +
  it is propagated toward the targets.  If a HID-ACCEPT,
 +
  HID-REJECT, or ACK is not received for the CONNECT between any
 +
  two agents within the appropriate timeout interval, the request
 +
  will be resent up to NConnect times before giving up.
  
            SEND_ICMP( src, dst, TOS, TTL, BufPTR, len, Id, DF, opt )
+
NDisconnect
              -> result
+
  NDisconnect is an integer parameter maintained by each ST
 +
  agent.  It is used to control retransmission of a DISCONNECT
 +
  message.  A DISCONNECT request must be acknowledged by each
 +
  next-hop agent as it is propagated toward the targets.  If this
 +
  ACK is not received for the DISCONNECT between any two agents
 +
  within the appropriate timeout interval, the request will be
 +
  resent up to NDisconnect times before giving up.
  
            RECV_ICMP( BufPTR )
+
next protocol identifier
              -> result, src, dst, len, opt
+
  The next protocol identifier is used by a target ST agent to
 +
  identify to which of several higher layer protocols it should
 +
  pass data packets it receives the network.  Examples of higher
 +
  layer protocols include the Network Voice Protocol and the
 +
  Packet Video Protocol.  These higher layer protocols will
 +
  typically perform further demultiplexing among multiple
 +
  application processes as part of their protocol processing
 +
  activities.
  
 +
next-hop
 +
  Synonym for next-hop ST agent.
  
      3.8.5.        ST Layer Services Provided
+
next-hop ST agent
 +
  For each origin or intermediate ST agent managing a stream
 +
  there are a set of next-hop ST agents. The intermediate agent
 +
  forwards each data packet it receives to all the next-hop ST
 +
  agents, which in turn forward the data toward the target host
 +
  agent (if the particular next-hop agent is another intermediate
 +
  agent) or to the next higher protocol layer at the target (if
 +
  the particular next-hop agent is a host agent).
  
        Interface to the ST layer services may be modeled using a set
+
NextPcol
        of subroutine calls (but need not be implemented as such).
+
  NextPcol is a field in each Target of the CONNECT message used
        When the protocol is implemented as part of an operating
+
  to convey the next protocol identifier.  See definition of next
        system, these subroutines may be used directly by a higher
+
  protocol identifier above for more details.
        level protocol processing layer.
 
  
        These subroutines might also be provided through system service
+
NHIDAbort
        calls to provide a raw interface for use by an application.
+
  NHIDAbort is an integer parameter maintained by each ST agent.
        Often, this will require further adaptation to conform with the
+
  It is the number of unacceptable HID proposals before an ST
        idiom of the particular operating system.  For example, 4.3 BSD
+
  agent aborts the HID negotiation process.
        UNIX (TM) provides sockets, ioctls and signals for network
 
        programming.
 
  
        open( connect/listen, SAPBytes, local SAP, local host,
+
NHIDAck
              account, authentication info, < foreign host,
+
  NHIDAck is an integer parameter maintained by each ST agent.
              SAPBytes, foreign SAP, options >*, flow spec,
+
  It is used to control retransmission of HID-CHANGE-REQUEST
              precedence, group name, optional parameters )
+
  messages.  HID-CHANGE-REQUEST is sent by an ST agent to the
            -> result, id, stream name, < foreign host,
+
  previous-hop ST agent to request that the HID in use between
              foreign SAPBytes, foreign SAP, result, flow spec,
+
  those agents be changed.  The previous-hop acknowledges the
              rname, optional parameters >*
+
  HID-CHANGE-REQUEST message by sending a HID-CHANGE message.  If
 +
  the HID-CHANGE is not received within the appropriate timeout
 +
  interval, the request will be resent up to NHIDAck times before
 +
  giving up.
  
        Note that an open by a target in "listen mode" may cause ST to
+
NHIDChange
        create a state block for the stream to facilitate rendezvous.
+
  NHIDChange is an integer parameter maintained by each ST agent.
 +
  It is used to control retransmission of the HID-CHANGE message.
 +
  A HID-CHANGE message must be acknowledged by the next-hop agent.
 +
  If this ACK is not received within the appropriate timeout
 +
  interval, the request will be resent up to NHIDChange times
 +
  before giving up.
  
        add( id, SAPBytes, local SAP, local host, < foreign host,
+
NRefuse
              SAPBytes, foreign SAP, options >*, flow spec,
+
  NRefuse is an integer parameter maintained by each ST agent.
              precedence, group name, optional parameters )
+
  It is used to control retransmission of a REFUSE message.  As a
            -> result, < foreign host, foreign SAPBytes,
+
  REFUSE request is relayed by agents back toward the origin, it
              foreign SAP, result,
+
  must be acknowledged by each previous-hop agent.  If this ACK is
              flow spec, rname, optional parameters >*
+
  not received within the appropriate timeout interval, the
 +
  request will be resent up to NRefuse times before giving up.
  
        send( id, buffer address, byte count, priority )
+
NRetryRoute
            -> result, next send time, burst send time
+
  NRetryRoute is an integer parameter maintained by each ST
 +
  agent.  It is used to control route exploration.  When an agent
 +
  receives a REFUSE message whose ReasonCode indicates that the
 +
  originally selected route is not acceptable, the agent should
 +
  attempt to find an alternate route to the target.  If the agent
 +
  has not found a viable route after a maximum of NRetryRoute
 +
  choices, it should give up and notify the previous-hop or
 +
  application that it cannot find an acceptable path to the
 +
  target.
  
        recv( id, buffer address, max byte count )
+
origin
            -> result, byte count
+
  The origin of a stream is the host agent where an application
 +
  or higher level protocol originally requested that the stream be
 +
  created.  The origin specifies the data to be sent through the
 +
  stream.
  
        recvsignal( id )
+
parameter
            -> result, signal, info
+
  Parameters are additional values that may be included in
 +
  control messages.  Parameters are often optional.  They are
 +
  distinguished from fields, which are always present.
  
 +
participants
 +
  Participants are the end-users of a stream.
  
 +
PDU
 +
  Abbreviation for Protocol Data Unit, defined below.
  
CIP Working Group                                           
+
peer
 +
  The term peer is used to refer to entities at the same protocol
 +
  layer.  It is used here to identify instances of an application
 +
  or protocol layer above ST.  For example, data is passed through
 +
  a stream from an originating peer process to its target peers.
  
RFC 1190                Internet Stream Protocol            October 1990
+
previous-hop
 +
  Synonym for previous-hop ST agent.
  
 +
previous-hop ST agent
 +
  The origin or intermediate agent from which an ST agent receives
 +
  its data.
  
        receivecontrol( id )
+
protocol data unit
            -> result, id, stream name, < foreign host,
+
  A protocol data unit (PDU) is the unit of data passed to a
              foreign SAPBytes, foreign SAP, result, flow spec,
+
  protocol layer by the next higher layer protocol or user.  It
              rname, optional parameters >*
+
  consists of control information and possibly user data.
  
        sendcontrol( id, flow spec, precedence, options,
+
RecoveryTimeout
              < foreign host, SAPBytes, foreign SAP, options >*)
+
  RecoveryTimeout is specified in the FlowSpec of each stream.
            -> result, < foreign host, foreign SAPBytes,
+
  The minimum of these values over all streams between a pair of
              foreign SAP, result, flow spec, rname,
+
  adjacent agents determines how often those agents must send
              optional parameters >*
+
  HELLO messages to each other in order to ensure that failure of
 +
  one of the agents will be detected quickly enough to meet the
 +
  guarantee implied by the FlowSpec.
  
        change( id, flow spec, precedence, options,
+
Restarted bit
              < foreign host, SAPBytes, foreign SAP, options >*)
+
  The Restarted bit is part of the HELLO message.  When set, it
            -> result, < foreign host, foreign SAPBytes,
+
  indicates that the sending agent was restarted recently (within
              foreign SAP, result, flow spec, rname,
+
  the last HelloTimerHoldDown seconds).
              optional parameters >*
 
  
        close( id, < foreign host, SAPBytes, foreign SAP >*,
+
round-trip time
              optional parameters )
+
  The round-trip-time is the time it takes a message to be sent,
            -> result
+
  delivered, processed, and the acknowledgment received.  It
 +
  includes both network and processing delays.
  
        status( id/stream name/group name )
+
RTT
            -> result, account, group name, protocol,
+
  Abbreviation for round-trip-time.
              < stream name, < foreign host, SAPbytes,
 
              foreign SAP, state, options, flow spec,
 
              routing info, rname >*, precedence, options >*
 
  
        creategroup( members* )
+
RVLId
            -> result, group name
+
  Abbreviation for Receiver's Virtual Link Identifier.  It
 +
  uniquely identifies to the receiver the virtual link, and this
 +
  stream, used to send it a message.  See definition for Virtual
 +
  Link Identifier below.
  
        deletegroup( group name, members* )
+
SAP
            -> result
+
  Abbreviation for Service Access Point.
  
 +
SCMP
 +
  Abbreviation for ST Control Message Protocol, defined below.
  
 +
Service Access Point
 +
  A point where a protocol service provider makes available the
 +
  services it offers to a next higher layer protocol or user.
  
 +
setup phase
 +
  Before data can be transmitted through a stream, the ST agents
 +
  must distribute state information about the stream to all agents
 +
  along the path(s) to the target(s).  This is the setup phase.
 +
  The setup phase ends when all the ACCEPT and REFUSE messages
 +
  sent by the targets have been delivered to the origin.  At this
 +
  point, the data transfer phase begins and data can be sent.
 +
  Requests to modify the stream can be issued after the setup
 +
  phase has ended, i.e., during the data transfer phase without
 +
  disrupting the flow of data.
  
 +
ST agent
 +
  An ST agent is an entity that implements the ST Protocol.
  
 +
ST Control Message Protocol
 +
  The ST Control Message Protocol is the subset of the overall ST
 +
  Protocol responsible for creation, modification, maintenance,
 +
  and tear down of a stream.  It also includes support for event
 +
  notification and status monitoring.
  
 +
stream
 +
  A stream is the basic object managed by the ST Protocol for
 +
  transmission of data.  A stream has one origin where data are
 +
  generated and one or more targets where the data are received
 +
  for processing.  A flow specification, provided by the origin
 +
  and negotiated among the origin, intermediate, and target ST
 +
  agents, identifies the requirements of the application and the
 +
  guarantees that can be assured by the ST agents.
  
 +
subsets
 +
  Subsets of the ST Protocol are permitted, as defined in various
 +
  sections of this specification.  Subsets are defined to allow
 +
  simplified implementations that can still effectively
 +
  interoperate with more complete implementations without causing
 +
  disruption.
  
 +
SVLId
 +
  Abbreviation for Sender's Virtual Link Identifier.  It uniquely
 +
  identifies to the receiver the virtual link identifier that
 +
  should be placed into the RVLId field of all replies sent over
 +
  the virtual link for a given stream.  See definition for Virtual
 +
  Link Identifier below.
  
 +
target
 +
  An ST target is the destination where data supplied by the
 +
  origin will be delivered for higher layer protocol or
 +
  application processing.
  
 +
tear down
 +
  The tear down phase of a stream begins when the origin indicates
 +
  that it has no further data to send and the ST agents through
 +
  which the stream passes should dismantle the stream and release
 +
  its resources.
  
 +
ToAccept
 +
  ToAccept is a timeout in seconds maintained by each ST agent.
 +
  It sets the retransmission interval for ACCEPT messages.
  
 +
ToConnect
 +
  ToConnect is a timeout in seconds maintained by each ST agent.
 +
  It sets the retransmission interval a CONNECT messages.
  
 +
ToDisconnect
 +
  ToDisconnect is a timeout in seconds maintained by each ST
 +
  agent.  It sets the retransmission interval for DISCONNECT
 +
  messages.
  
 +
ToHIDAck
 +
  ToHIDAck is a timeout in seconds maintained by each ST agent.
 +
  It sets the retransmission interval for HID-CHANGE-REQUEST
 +
  messages.
  
 +
ToHIDChange
 +
  ToHIDChange is a timeout in seconds maintained by each ST agent.
 +
  It sets the retransmission interval for HID-CHANGE messages.
  
 +
ToRefuse
 +
  ToRefuse is a timeout in seconds maintained by each ST agent.
 +
  It sets the retransmission interval for REFUSE messages.
  
 +
upstream
 +
  The direction in a stream from a target toward the origin.
  
 +
Virtual Link
 +
  A virtual link is one edge of the tree describing the path of
 +
  data flow through a stream.  A separate virtual link is assigned
 +
  to each pair of neighbor ST agents, even when multiple next-hops
 +
  are be reached through a single network level multicast group.
 +
  The virtual link allows efficient demultiplexing of ST Control
 +
  Message PDUs received from a single physical link or network.
  
 +
Virtual Link Identifier
 +
  For each ST Control Message sent, the sender provides its own
 +
  virtual link identifier and that of the receiver (if known).
 +
  Either of these identifiers, combined with the address of the
 +
  corresponding host, can be used to identify uniquely the virtual
 +
  control link to the agent.  However, virtual link identifiers
 +
  are chosen by the associated agent so that the agent may
 +
  precisely identify the stream, state machine, and other protocol
 +
  processing data elements managed by that agent, without regard
 +
  to the source of the control message.  Virtual link identifiers
 +
  are not negotiated, and do not change during the lifetime of a
 +
  stream.  They are discarded when the stream is torn down.
  
 +
== References ==
  
 +
[1] Braden, B., Borman, D., and C. Partridge, "Computing the
 +
    Internet Checksum", RFC 1071, USC/Information Sciences
 +
    Institute, Cray Research, BBN Laboratories, September
 +
    1988.
  
CIP Working Group                                           
+
[2] Braden, R. (ed.), "Requirements for Internet Hosts --
 
+
    Communication Layers", RFC 1122, USC/Information Sciences
RFC 1190                Internet Stream Protocol            October 1990
+
    Institute, October 1989.
 
 
 
 
                      [This page intentionally left blank.]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
4.      ST Protocol Data Unit Descriptions
 
 
 
  The ST PDUs sent between ST agents consist of an ST Header
 
  ncapsulating either a higher layer PDU or an ST Control Message.
 
  Since ST operates as an extension of IP, the packet arrives at the
 
  same network service access point that IP uses to receive IP
 
  datagrams, e.g., ST would use the same ethertype (0x800) as does IP.
 
  The two types of packets are distinguished by the IP Version Number
 
  field (the first four bits of the packet);  IP currently uses a value
 
  of 4, while ST has been assigned the value 5 [18].  There is no
 
  requirement for compatibility between IP and ST packet headers beyond
 
  the first four bits.
 
 
 
  The ST Header also includes an ST Version Number, a total length
 
  field, a header checksum, and a HID, as shown in Figure 21.  See
 
  Appendix 1 (page 147) for an explanation of the notation.
 
 
 
      ST is the IP Version Number assigned to identify ST packets.  The
 
      value for ST is 5.
 
 
 
      Ver is the ST Version Number.  This document defines ST Version 2.
 
 
 
      Pri is the priority of the packet.  It is used in data packets to
 
      indicate those packets to drop if a stream is exceeding its
 
      allocation.  Zero is the lowest priority and 7 the highest.
 
 
 
      T (bit 11) is used to indicate that a Timestamp is present
 
      following the ST Header but before any next higher layer protocol
 
      data.  The Timestamp is not permitted on ST Control Messages
 
      (which may use the OriginTimestamp option).
 
 
 
      Bits 12 through 15 are spares and should be set to 0.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  ST=5 | Ver=2 | Pri |T| Bits  |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |              HID              |        HeaderChecksum        |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                                                              |
 
  +-                          Timestamp                          -+
 
  |                                                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                        Figure 21.  ST Header
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
      TotalBytes is the length, in bytes, of the entire ST packet, it
 
      includes the ST Header and optional Timestamp but does not include
 
      any local network headers or trailers.  In general, all length
 
      fields in the ST Protocol are in units of bytes.
 
 
 
      HID is the 16-bit hop-by-hop stream identifier.  It is an
 
      abbreviation for the Name of the stream and is used both to reduce
 
      the packet header length and, by the receiver of the data packet,
 
      to make the forwarding function more efficient.  Control Messages
 
      have a HID value of zero.  HIDs are negotiated by the next-hop and
 
      previous-hop agents to make the abbreviation unique.  It is used
 
      here in the ST Header and in various Control Messages.  HID values
 
      1-3 are reserved for future use.
 
 
 
      HeaderChecksum covers only the ST Header and Timestamp, if
 
      present.  The ST Protocol uses 16-bit checksums here in the ST
 
      Header and in each Control Message.  The standard Internet
 
      checksum algorithm is used:  "The checksum field is the 16-bit
 
      one's complement of the one's complement sum of all 16-bit words
 
      in the header.  For purposes of computing the checksum, the value
 
      of the checksum field is zero."  See [1] [12] [15] for suggestions
 
      for efficient checksum algorithms.
 
 
 
      Timestamp is an optional timestamp inserted into data packets by
 
      the origin.  It is only present when the T bit, described above,
 
      is set (1).  Its use is negotiated at connection setup time;  see
 
      Sections 4.2.3.5 (page 108) and 4.2.3.1 (page 100).  The Timestamp
 
      has the NTP format;  see [13].
 
 
 
 
 
  4.1.      Data Packets
 
 
 
      ST packets whose HID is not zero to three are user data packets.
 
      Their interpretation is a matter for the higher layer protocols
 
      and consequently is not specified here.  The data packets are not
 
      protected by an ST checksum and will be delivered to the higher
 
      layer protocol even with errors.
 
 
 
      ST agents will not pass data packets over a new hop whose setup is
 
      not complete, i.e., a HID must have been negotiated and either an
 
      ACCEPT or REFUSE has been received for all targets specified in
 
      the CONNECT.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  4.2.      ST Control Message Protocol Descriptions
 
 
 
      ST Control Messages are between a previous-hop agent and its
 
      next-hop agent(s) using a HID of zero.  The control protocol
 
      follows a request-response model with all requests expecting
 
      responses.  Retransmission after timeout (see Section 3.7.6 (page
 
      66)) is used to allow for lost or ignored messages.  Control
 
      messages do not extend across packet boundaries; if a control
 
      message is too large for the MTU of a hop, its information
 
      (usually a TargetList) is partitioned and a control message per
 
      partition is sent.  All control messages have the following
 
      format:
 
 
 
        OpCode identifies the type of control message.  Each is
 
        described in detail in following sections.
 
 
 
        Options is used to convey OpCode-specific variations for a
 
        control message.
 
 
 
        TotalBytes is the length of the control message, in bytes,
 
        including all OpCode specific fields and optional parameters.
 
        The value is always divisible by four.
 
 
 
        RVLId is used to convey the Virtual Link Identifier of the
 
        receiver of the control message, when known, or zero in the
 
        case of an initial CONNECT or diagnostic message.  The RVLId is
 
        intended to permit efficient dispatch to the portion of a
 
        stream's state machine containing information about a specific
 
        operation in progress over the link.  RVLId values 1-3 are
 
        reserved; see Sections 3 (page 17) and 3.7.1.2 (page 49).
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |    OpCode    |    Options    |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |                              :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                            -+
 
  :                      OpCode Specific Data                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                Figure 22.  ST Control Message Format
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        SVLId is used to convey the Virtual Link Identifier of the
 
        sender of the control message.  Except for ERROR-IN-REQUEST and
 
        diagnostic messages, it must never be zero.  SVLId values 1-3
 
        are reserved; see Sections 3 (page 17) and 3.7.1.2 (page 49).
 
 
 
        Reference is a transaction number.  Each sender of a request
 
        control message assigns a Reference number to the message that
 
        is unique with respect to the stream.  The Reference number is
 
        used by the receiver to detect and discard duplicates.  Each
 
        acknowledgment carries the Reference number of the request
 
        being acknowledged.  Reference zero is never used, and
 
        Reference numbers are assumed to be monotonically increasing
 
        with wraparound so that the older-than and more-recent-than
 
        relations are well defined.
 
 
 
        LnkReference contains the Reference field of the request
 
        control message that caused this request control message to be
 
        created.  It is used in situations where a single request leads
 
        to multiple "responses".  Examples are CONNECT and CHANGE
 
        messages that must be acknowledged hop-by-hop and will also
 
        lead to an ACCEPT or REFUSE from each target in the TargetList.
 
 
 
        SenderIPAddress is the 32-bit IP address of the network
 
        interface that the ST agent used to send the control message.
 
        This value changes each time the packet is forwarded by an ST
 
        agent (hop-by-hop).
 
 
 
        Checksum is the checksum of the control message.  Because the
 
        control messages are sent in packets that may be delivered with
 
        bits in error, each control message must be checked before it
 
        is acted upon;  see Section 4 (page 76).
 
 
 
        OpCode Specific Data contains any additional information that
 
        is associated with the control message.  It depends on the
 
        specific control message and is explained further below.  In
 
        some response control messages, fields of zero are included to
 
        allow the format to match that of the corresponding request
 
        message.  The OpCode Specific Data may also contain any of the
 
        optional Parameters defined in Section 4.2.2 (page 80).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
      4.2.1.        ST Control Messages
 
 
 
        The CONNECT and CHANGE messages are used to establish or modify
 
        branches in the stream.  They propagate in the direction from
 
        the origin toward the targets.  They are end-to-end messages
 
        created by the origin.  They propagate all the way to the
 
        targets, and require ERROR-IN-REQUEST, ACK, HID-REJECT, HID-
 
        APPROVE, ACCEPT, or REFUSE messages in response.  The CONNECT
 
        message is the stream setup message.  The CHANGE message is
 
        used to change the characteristics of an established stream.
 
        The CONNECT message is also used to add one or more targets to
 
        an existing stream and during recovery of a broken stream.
 
        Both messages have a TargetList parameter and are processed
 
        similarly.
 
 
 
        The DISCONNECT message is used to tear down streams or parts of
 
        streams.  It propagates in the direction from the origin toward
 
        the targets.  It is either used as an end-to-end message
 
        generated by the origin that is used to completely tear down a
 
        stream, or is generated by an intermediate ST agent that
 
        preempts a stream or detects the failure of its previous-hop
 
        agent or network in the stream.  In the latter case, it is used
 
        to tear down the part of the stream from the failure to the
 
        targets, thus the message propagates all the way to the
 
        targets.
 
 
 
        The REFUSE message is sent by a target to refuse to join or
 
        remove itself from a stream;  in these cases, it is an end-to-
 
        end message.  An intermediate ST agent issues a REFUSE if it
 
        cannot find a route to a target, can only find a route to a
 
        target through the previous-hop, preempts a stream, or detects
 
        a failure in a next-hop ST agent or network.  In all cases a
 
        REFUSE propagates in the direction toward the origin.
 
 
 
        The ACCEPT message is an end-to-end message generated by a
 
        target and is used to signify the successful completion of the
 
        setup of a stream or part of a stream, or the change of the
 
        FlowSpec.  There are no other messages that are similar to it.
 
 
 
        The following sections contain descriptions of common fields
 
        and parameters, followed by descriptions of the individual
 
        control messages, both listed in alphabetical order.  A brief
 
        description of the use of the control message is given.  The
 
        packet format is shown graphically.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
      4.2.2.        Common SCMP Elements
 
 
 
        Several fields and parameters (referred to generically as
 
        "elements") are common to two or more PDUs.  They are described
 
        in detail here instead of repeating their description several
 
        times.  In many cases, the presence of a parameter is optional.
 
        To permit the parameters to be easily defined and parsed, each
 
        is identified with a PCode byte that is followed by a PBytes
 
        byte indicating the length of the parameter in bytes (including
 
        the PCode, PByte, and any padding bytes).  If the length of the
 
        information is not a multiple of 4 bytes, the parameter is
 
        padded with one to three zero (0) bytes.  PBytes is thus always
 
        a multiple of four.  Parameters can be present in any order.
 
 
 
 
 
        4.2.2.1.        DetectorIPAddress
 
 
 
            Several control messages contain the DetectorIPAddress
 
            field.  It is used to identify the agent that caused the
 
            first instance of the message to be generated, i.e., before
 
            it was propagated.  It is copied from the received message
 
            into the copy of the message that is to be propagated to a
 
            previous-hop or next-hop.  It use is primarily diagnostic.
 
 
 
 
 
        4.2.2.2.        ErroredPDU
 
 
 
            The ErroredPDU parameter (PCode = 1) is used for diagnostic
 
            purposes to encapsulate a received ST PDU that contained an
 
            error.  It may be included in the ERROR-IN-REQUEST, ERROR-
 
            IN-RESPONSE, or REFUSE messages.  It use is primarily
 
            diagnostic.
 
 
 
              PDUBytes indicates how many bytes of the PDUInError are
 
              actually present.
 
 
 
              ErrorOffset contains the number of bytes into the errored
 
              PDU to the field containing the error.  At least as much
 
              of the PDU in error must be included to
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 1  |    PBytes    |  PDUBytes    |  ErrorOffset  |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                          PDUInError          :    Padding    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                          Figure 23.  ErroredPDU
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
              include the field or parameter identified by ErrorOffset;
 
              an ErrorOffset of zero would imply a problem with the IP
 
              Version Number or ST Version Number fields.
 
 
 
              PDUInError is the PDU in error, beginning with the ST
 
              Header.
 
 
 
 
 
        4.2.2.3.        FlowSpec & RFlowSpec
 
 
 
            The FlowSpec is used to convey stream service requirements
 
            end-to-end.  We expect that other versions of FlowSpec will
 
            be needed in the future, which may or may not be subsets or
 
            supersets of the version described here.  PBytes will allow
 
            new constraints to be added to the end without having to
 
            simultaneously update all implementations in the field.
 
            Implementations are expected to be able to process in a
 
            graceful manner a Version 4 (or higher) structure that has
 
            more elements than shown here.
 
 
 
            The FlowSpec parameter (PCode = 2) is used in several
 
            messages to convey the FlowSpec.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |    PCode    |    PBytes    |  Version = 3  |      0      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  DutyFactor  |  ErrorRate  |  Precedence  |  Reliability  |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Tradeoffs          |        RecoveryTimeout        |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          LimitOnCost          |        LimitOnDelay          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |        LimitOnPDUBytes        |        LimitOnPDURate        |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        MinBytesXRate                        |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        AccdMeanDelay                        |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      AccdDelayVariance                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          DesPDUBytes          |          DesPDURate          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                    Figure 24.  FlowSpec & RFlowSpec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
            The RFlowSpec parameter (PCode = 12) is used in conjunction
 
            with the FDx option to convey the FlowSpec that is to be
 
            used in the reverse direction.
 
 
 
              Version identifies the version of the FlowSpec.  Version
 
              3 is defined here.
 
 
 
              DutyFactor is the estimated proportion of the time that
 
              the requested bandwidth will actually be in use.  Zero is
 
              taken to represent 256 and signify a duty factor of 1.
 
              Other values are to be divided by 256 to yield the duty
 
              factor.
 
 
 
              ErrorRate expresses the error rate as the negative
 
              exponent of 10 in the error rate.  One (1) represents a
 
              bit error rate of 0.1 and 10 represents 0.0000000001.
 
 
 
              Precedence is the precedence of the connection being
 
              established.  Zero represents the lowest precedence.
 
              Note that non-zero values of this parameter should be
 
              subject to authentication and authorization checks, which
 
              are not specified here.  In general, the distinction
 
              between precedence and priority is that precedence
 
              specifies streams that are permitted to take previously
 
              committed resources from another stream, while priority
 
              identifies those PDUs that a stream is most willing to
 
              have dropped when the stream exceeds its guaranteed
 
              limits.
 
 
 
              Reliability is modified by each intervening ST agent as a
 
              measure of the probability that a given offered data
 
              packet will be forwarded and not dropped.  Zero is taken
 
              to represent 256 and signify a probability of 1.  Other
 
              values are to be divided by 256 to yield the probability.
 
 
 
              Tradeoffs is incompletely defined at this time.  Bits
 
              currently specified are as follows:
 
 
 
                  The most significant bit in the field, bit 0 in the
 
                  Figure 24, when one (1) means that each ST agent must
 
                  "implement" all constraints in the FlowSpec even if
 
                  they are not shown in the figure, e.g., when the
 
                  FlowSpec has been extended.  When zero (0), unknown
 
                  constraints may be ignored.
 
 
 
                  The second most significant bit in the field, bit 1,
 
                  when one (1) means that one or more constraints are
 
                  unknown and have been ignored.  When zero (0), all
 
                  constraints are known and have been processed.
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  The third most significant bit in the field, bit 2, is
 
                  used for RevChrg;  see Section 3.6.5 (page 46).
 
 
 
                  Other bits are currently unspecified, and should be
 
                  set to zero (0) by the origin ST agent and not changed
 
                  by other agents unless those agents know their
 
                  meaning.
 
 
 
              RecoveryTimeout specifies the nominal number of
 
              milliseconds that the application is willing to wait for
 
              a failed system component to be detected and any
 
              corrective action to be taken.
 
 
 
              LimitOnCost specifies the maximum cost that the origin is
 
              willing to expend.  A value of zero indicates that the
 
              application is not willing to incur any direct charges
 
              for the resources used by the stream.  The meaning of
 
              non-zero values is left for further study.
 
 
 
              LimitOnDelay specifies the maximum end-to-end delay, in
 
              milliseconds, that can be tolerated by the origin.
 
 
 
              LimitOnPDUBytes is the smallest packet size, in terms of
 
              ST-user data bytes, that can be tolerated by the origin.
 
 
 
              LimitOnPDURate is the lowest packet rate that can be
 
              tolerated by the origin, expressed as tenths of a packet
 
              per second.
 
 
 
              MinBytesXRate is the minimum bandwidth that can be
 
              tolerated by the origin, expressed as a product of bytes
 
              and tenths of a packet per second.
 
 
 
              AccdMeanDelay is modified by each intervening ST agent.
 
              This provides a means of reporting the total expected
 
              delay, in milliseconds, for a data packet.  Note that it
 
              is implicitly assumed that the requested mean delay is
 
              zero and there is no limit on the mean delay, so there
 
              are no parameters to specify these explicitly.
 
 
 
              AccdDelayVariance is also modified by each intervening ST
 
              agent as a measure, in milliseconds squared, of the
 
              packet dispersion.  This quantity can be used by the
 
              target or origin in determining whether the resulting
 
              stream has an adequate quality of service to support the
 
              application.  Note that it is implicitly assumed that the
 
              requested delay variance is zero and there is no limit on
 
              the delay variance, so there are no parameters to specify
 
              these explicitly.
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
              DesPDUBytes is the desired PDU size in bytes.  This is
 
              not necessarily the same as the minimum necessary PDU
 
              size.  This value may be made smaller by intervening ST
 
              agents so long as it is not made smaller than
 
              LimitOnPDUBytes.  The *PDUBytes limits measure the size
 
              of the PDUs of next-higher protocol layer, i.e., the user
 
              information contained in a data packet.  An ST agent must
 
              account for both the ST Header (including possible IP
 
              encapsulation) and any local network headers and trailers
 
              when comparing a network's MTU with *PDUBytes.  In an
 
              ACCEPT message, the value of this field will be no larger
 
              than the MTU of the path to the specified target.
 
 
 
              DesPDURate is the requested PDU rate, expressed as tenths
 
              of a packet per second.  This value may be made smaller
 
              by intervening ST agents so long as it is not made
 
              smaller than LimitOnPDURate.
 
 
 
              It is expected that the next parameter to be added to the
 
              FlowSpec will be a Burst Descriptor.  This parameter will
 
              describe the burstiness of the offered traffic.  For
 
              example, this may include the simple average rate, peak
 
              rate and variance values, or more complete descriptions
 
              that characterize the distribution of expected burst
 
              rates and their expected duration.  The nature of the
 
              algorithms that deal with the traffic's burstiness and
 
              the information that needs to be described by this
 
              parameter will be subjects of further experimentation.
 
              It is expected that a new FlowSpec with Version = 4 will
 
              be defined that looks like Version 3 but has a Burst
 
              Descriptor parameter appended to the end.
 
 
 
 
 
        4.2.2.4.        FreeHIDs
 
 
 
            The FreeHIDs parameter (PCode = 3) is used to communicate to
 
            the previous-hop suggestions for a HID.  It consists of
 
            BaseHID and FreeHIDBitMask fields.  Experiments will
 
            determine how long the mask should be for practical use of
 
            this parameter.  The parameter (if implemented) should be
 
            included in all HID-REJECTs, and in HID-APPROVEs that are
 
            linked to a multicast CONNECT, e.g., one containing the
 
            MulticastAddress parameter.
 
 
 
              BaseHID was the suggested value in a HID-CHANGE or
 
              CONNECT.  BaseHID is chosen to be the suggested HID value
 
              to insure that the masks from multiple FreeHIDs
 
              parameters will overlap.
 
 
 
              FreeHIDBitMask identifies available HID values as
 
              follows.  Bit 0 in the FreeHIDBitMask corresponds to a
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
              HID with a value equal to BaseHID with the 5 least
 
              significant bits set to zero, bit 1 corresponds to that
 
              value + 1, etc.  This alignment of the mask on a 32-bit
 
              boundary is used so that masks from several FreeHIDs
 
              parameters might more easily be combined using a bit-wise
 
              AND function to find a free HID.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 3  |    4+4*N    |            BaseHID            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                        FreeHIDBitMask                        :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                          Figure 25.  FreeHIDs
 
 
 
 
 
        4.2.2.5.        Group & RGroup
 
 
 
            The Group parameter (PCode = 4) is an optional argument
 
            used only for the creation of a stream.  This parameter
 
            contains a GroupName; the GroupName may be the same as the
 
            Name of one of the group's streams.  In addition, there
 
            may be some number of <SubGroupId, Relation> tuples that
 
            describe the meaning of the grouping and the relation
 
            between the members of the group.  The forms of grouping
 
            are for further study.
 
 
 
            The RGroup parameter (PCode = 13) is an optional argument
 
            used only for the creation of a stream in the reverse
 
            direction that is a member of a Group;  see the FDx
 
            option, Section 3.6.3 (page 45).  This parameter has the
 
            same format as the Group parameter.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |    PCode    |    12+4*N    |                              !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                            -+
 
  !                          GroupName                          !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          SubGroupId          |            Relation          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :              ...              :              ...              :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          SubGroupId          |            Relation          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                      Figure 26.  Group & RGroup
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
            A GroupName has the same format as a Name;  see Figure 29.
 
 
 
 
 
        4.2.2.6.        HID & RHID
 
 
 
            The HID parameter (PCode = 5) is used in the NOTIFY message
 
            when the notification is related to a HID, and possibly in
 
            the STATUS-RESPONSE message to convey additional HIDs that
 
            are valid for a stream when there are more than one.  It
 
            consists of the PCode and PBytes bytes prepended to a HID;
 
            HIDs were described in Section 4 (page 76).
 
 
 
            The RHID parameter (PCode = 14) is used in conjunction with
 
            the FDx option to convey the HID that is to be used in the
 
            reverse direction.  It consists of the PCode and PBytes
 
            bytes prepended to a HID.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |    PCode    |      4      |              HID              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                        Figure 27.  HID & RHID
 
 
 
 
 
        4.2.2.7.        MulticastAddress
 
 
 
            The MulticastAddress parameter (PCode = 6) is an optional
 
            parameter that is used, when setting up a network level
 
            multicast group, to communicate an IP and/or local network
 
            multicast address to the next-hop agents that should become
 
            members of the group.
 
 
 
              LocalNetBytes is the length of the Local Net Multicast
 
              Address.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 6  |    PBytes    | LocalNetBytes |      0      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                    IP Multicast Address                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                  Local Net Multicast Address  :    Padding    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                      Figure 28.  MulticastAddress
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
              IP Multicast Address is described in [6].  This field is
 
              zero (0) if no IP multicast address is known or is
 
              applicable.  The block of addresses 224.1.0.0 -
 
              224.1.255.255 has been allocated for use by ST.
 
 
 
              Local Net Multicast Address is the multicast address to
 
              be used on the local network.  It corresponds to the IP
 
              Multicast Address when the latter is non-zero.
 
 
 
 
 
        4.2.2.8.        Name & RName
 
 
 
            Each stream is uniquely (i.e., globally) identified by a
 
            Name.  A Name is created by the origin host ST agent and is
 
            composed of 1) a 16-bit number chosen to make the Name
 
            unique within the agent, 2) the IP address of the origin ST
 
            agent, and 3) a 32-bit timestamp.  If the origin has
 
            multiple IP addresses, then any that can be used to reach
 
            target may be used in the Name.  The intent is that the
 
            <Unique ID, IP Address> tuple be unique for the lifetime of
 
            the stream.  It is suggested that to increase robustness a
 
            Unique ID value not be reused for a period of time on the
 
            order of 5 minutes.
 
 
 
            The Timestamp is included both to make the Name unique over
 
            long intervals (e.g., forever) for purposes of network
 
            management and accounting/billing, and to protect against
 
            failure of an ST agent that causes knowledge of active
 
            Unique IDs to be lost.  The assumption is that all ST agents
 
            have access to some "clock".  If this is not the case, the
 
            agent should have access to some form of non-volatile memory
 
            in which it can store some number that at least gets
 
            incremented per restart.
 
 
 
            The Name parameter (PCode = 7) is used in most control
 
            messages to identify a stream.
 
 
 
            The RName parameter (PCode = 15) is used in conjunction with
 
            the FDx option to convey the Name of the reverse stream in
 
            an ACCEPT message.
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |    PCode    |      12      |            Unique ID          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                          IP Address                          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                          Timestamp                          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                        Figure 29.  Name & RName
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.2.9.        NextHopIPAddress
 
 
 
            The NextHopIPAddress parameter (PCode = 8) is an optional
 
            parameter of NOTIFY (RouteBack) or REFUSE (RouteInconsist or
 
            RouteLoop) and contains the IP address of a suggested next-
 
            hop ST agent.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 8  |      8      |              0              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      next-hop IP address                    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                      Figure 30.  NextHopIPAddress
 
 
 
 
 
        4.2.2.10.        Origin
 
 
 
            The Origin parameter (PCode = 9) is used to identify the
 
            origin of the stream, the next higher protocol, and the SAP
 
            being used in conjunction with that protocol.
 
 
 
              NextPcol is an 8-bit field used in demultiplexing
 
              operations to identify the protocol to be used above ST.
 
              The values of NextPcol are in the same number space as
 
              the IP Header's Protocol field and are consequently
 
              defined in the Assigned Numbers RFC [18].
 
 
 
              OriginSAPBytes specifies the length of the OriginSAP,
 
              exclusive of any padding required to maintain 32-bit
 
              alignment.
 
 
 
              OriginIPAddress is (one of) the IP address of the origin.
 
 
 
              OriginSAP identifies the origin's SAP associated with the
 
              NextPcol protocol.
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 9  |    PBytes    |    NextPcol  |OriginSAPBytes |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        OriginIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                          OriginSAP          :    Padding    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                          Figure 31.  Origin
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.2.11.        OriginTimestamp
 
 
 
            The OriginTimestamp parameter (PCode = 10) is used to
 
            indicate the time at which the control message was sent.
 
 
 
            The units and format of the timestamp is that defined in the
 
            NTP protocol specification [13].  Note that discontinuities
 
            over leap seconds are expected.
 
 
 
            Note that the time synchronization implied by the use of
 
            such a parameter is the subject of systems management
 
            functions not described in this memo, e.g., NTP.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 10  |      12      |              0              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                                                              |
 
  +-                          Timestamp                          -+
 
  |                                                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                          Figure 32.  OriginTimestamp
 
 
 
 
 
        4.2.2.12.        ReasonCode
 
 
 
            Several errors may occur during protocol processing.  All ST
 
            error codes are taken from a single number space.  The
 
            currently defined values and their meaning is presented in
 
            the list below.  Note that new error codes may be defined
 
            from time to time.  All implementations are expected to
 
            handle new codes in a graceful manner.  If an unknown
 
            ReasonCode is encountered, it should be assumed to be fatal.
 
 
 
 
 
                    0                  1
 
                    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
                  |          ReasonCode          |
 
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                        Figure 33.  ReasonCode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  Name      Value                Meaning
 
            ---------------- ----- ---------------------------------------
 
 
 
            AcceptTimeout      2  An Accept has not been
 
                                  acknowledged.
 
 
 
            AccessDenied      3  Access denied.
 
 
 
            AckUnexpected      4  An unexpected ACK was received.
 
 
 
            ApplAbort          5  The application aborted the stream
 
                                  abnormally.
 
 
 
            ApplDisconnect    6  The application closed the stream
 
                                  normally.
 
 
 
            AuthentFailed      7  The authentication function
 
                                  failed.
 
 
 
            CantGetResrc      8  Unable to acquire (additional)
 
                                  resources.
 
 
 
            CantRelResrc      9  Unable to release excess
 
                                  resources.
 
 
 
            CksumBadCtl      10  A received control PDU has a bad
 
                                  message checksum.
 
 
 
            CksumBadST        11  A received PDU has a bad ST Header
 
                                  checksum.
 
 
 
            DropExcdDly      12  A received PDU was dropped because
 
                                  it could not be processed within
 
                                  the delay specification.
 
 
 
            DropExcdMTU      13  A received PDU was dropped because
 
                                  its size exceeds the MTU.
 
 
 
            DropFailAgt      14  A received PDU was dropped because
 
                                  of a failed ST agent.
 
 
 
            DropFailHst      15  A received PDU was dropped because
 
                                  of a host failure.
 
 
 
            DropFailIfc      16  A received PDU was dropped because
 
                                  of a broken interface.
 
 
 
            DropFailNet      17  A received PDU was dropped because
 
                                  of a network failure.
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  Name      Value                Meaning
 
            ---------------- ----- ---------------------------------------
 
 
 
            DropLimits        18  A received PDU was dropped because
 
                                  it exceeds the resource limits for
 
                                  its stream.
 
 
 
            DropNoResrc      19  A received PDU was dropped due to
 
                                  no available resources (including
 
                                  precedence).
 
 
 
            DropNoRoute      20  A received PDU was dropped because
 
                                  of no available route.
 
 
 
            DropPriLow        21  A received PDU was dropped because
 
                                  it has a priority too low to be
 
                                  processed.
 
 
 
            DuplicateIgn      22  A received control PDU is a
 
                                  duplicate and is being
 
                                  acknowledged.
 
 
 
            DuplicateTarget  23  A received control PDU contains a
 
                                  duplicate target, or an attempt to
 
                                  add an existing target.
 
 
 
            ErrorUnknown      1  An error not contained in this
 
                                  list has been detected.
 
 
 
            failure          N/A  An abbreviation used in the text
 
                                  for any of the more specific
 
                                  errors:  DropFailAgt, DropFailHst,
 
                                  DropFailIfc, DropFailNet,
 
                                  IntfcFailure, NetworkFailure,
 
                                  STAgentFailure, FailureRecovery.
 
 
 
            FailureRecovery  24  A notification that recovery is
 
                                  being attempted.
 
 
 
            FlowVerBad        25  A received control PDU has a
 
                                  FlowSpec Version Number that is
 
                                  not supported.
 
 
 
            GroupUnknown      26  A received control PDU contains an
 
                                  unknown Group Name.
 
 
 
            HIDNegFails      28  HID negotiation failed.
 
 
 
            HIDUnknown        29  A received control PDU contains an
 
                                  unknown HID.
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  Name      Value                Meaning
 
            ---------------- ----- ---------------------------------------
 
 
 
            InconsistHID      30  An inconsistency has been detected
 
                                  with a stream Name and
 
                                  corresponding HID.
 
 
 
            InconsistGroup    31  An inconsistency has been detected
 
                                  with the streams forming a group.
 
 
 
            IntfcFailure      32  A network interface failure has
 
                                  been detected.
 
 
 
            InvalidHID        33  A received ST PDU contains an
 
                                  invalid HID.
 
 
 
            InvalidSender    34  A received control PDU has an
 
                                  invalid SenderIPAddress field.
 
 
 
            InvalidTotByt    35  A received control PDU has an
 
                                  invalid TotalBytes field.
 
 
 
            LnkRefUnknown    36  A received control PDU contains an
 
                                  unknown LnkReference.
 
 
 
            NameUnknown      37  A received control PDU contains an
 
                                  unknown stream Name.
 
 
 
            NetworkFailure    38  A network failure has been
 
                                  detected.
 
 
 
            NoError            0  No error has occurred.
 
 
 
            NoRouteToAgent    39  Cannot find a route to an ST
 
                                  agent.
 
 
 
            NoRouteToDest    40  Cannot find a route to the
 
                                  destination.
 
 
 
            NoRouteToHost    41  Cannot find a route to a host.
 
 
 
            NoRouteToNet      42  Cannot find a route to a network.
 
 
 
            OpCodeUnknown    43  A received control PDU has an
 
                                  invalid OpCode field.
 
 
 
            PCodeUnknown      44  A received control PDU has a
 
                                  parameter with an invalid PCode.
 
 
 
            ParmValueBad      45  A received control PDU contains an
 
                                  invalid parameter value.
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  Name      Value                Meaning
 
            ---------------- ----- ---------------------------------------
 
 
 
            PcolIdUnknown    46  A received control PDU contains an
 
                                  unknown next-higher layer protocol
 
                                  identifier.
 
 
 
            ProtocolError    47  A protocol error was detected.
 
 
 
            PTPError          48  Multiple targets were specified
 
                                  for a stream created with the PTP
 
                                  option.
 
 
 
            RefUnknown        49  A received control PDU contains an
 
                                  unknown Reference.
 
 
 
            RestartLocal      50  The local ST agent has recently
 
                                  restarted.
 
 
 
            RemoteRestart    51  The remote ST agent has recently
 
                                  restarted.
 
 
 
            RetransTimeout    52  An acknowledgment to a control
 
                                  message has not been received
 
                                  after several retransmissions.
 
 
 
            RouteBack        53  The routing function indicates
 
                                  that the route to the next-hop is
 
                                  through the same interface as the
 
                                  previous-hop and is not the
 
                                  previous-hop.
 
 
 
            RouteInconsist    54  A routing inconsistency has been
 
                                  detected, e.g., a route loop.
 
 
 
            RouteLoop        55  A CONNECT was received that
 
                                  specified an existing target.
 
 
 
            SAPUnknown        56  A received control PDU contains an
 
                                  unknown next-higher layer SAP
 
                                  (port).
 
 
 
            STAgentFailure    57  An ST agent failure has been
 
                                  detected.
 
 
 
            StreamExists      58  A stream with the given Name or
 
                                  HID already exists.
 
 
 
            StreamPreempted  59  The stream has been preempted by
 
                                  one with a higher precedence.
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  Name      Value                Meaning
 
            ---------------- ----- ---------------------------------------
 
 
 
            STVerBad          60  A received PDU is not ST Version
 
                                  2.
 
 
 
            TooManyHIDs      61  Attempt to add more HIDs to a
 
                                  stream than the implementation
 
                                  supports.
 
 
 
            TruncatedCtl      62  A received control PDU is shorter
 
                                  than expected.
 
 
 
            TruncatedPDU      63  A received ST PDU is shorter than
 
                                  the ST Header indicates.
 
 
 
            UserDataSize      64  The UserData parameter is too
 
                                  large to permit a control message
 
                                  to fit into a network's MTU.
 
 
 
 
 
        4.2.2.13.        RecordRoute
 
 
 
            The RecordRoute parameter (PCode = 11) may be used to
 
            request that the route between the origin and a target be
 
            recorded and returned to the agent specified in the
 
            DetectorIPAddress field.
 
 
 
            FreeOffset is the offset to the position where the next
 
            next-hop IP address should be inserted.  It is initialized
 
            to four (4) and incremented by four each time an agent
 
            inserts its IP address.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 11  |    PBytes    |      0      |  FreeOffset  |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      next-hop IP address                    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                              ...                              :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      next-hop IP address                    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                          Figure 34.  RecordRoute
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.2.14.        SrcRoute
 
 
 
            The SrcRoute parameter is used, in the Target structure
 
            shown in Figure 36, to specify the IP addresses of the ST
 
            agents through which the stream to the target should pass.
 
            There are two forms of the option, distinguished by the
 
            PCode.
 
 
 
            With loose source route (PCode = 18) each ST agent first
 
            examines the first next-hop IP address in the option.  If
 
            the address is (one of) the address of the current ST agent,
 
            that entry is removed, and the PBytes field reduced by four
 
            (4).  If the resulting PBytes field contains 4 (i.e., there
 
            are no more next-hop IP addresses) the parameter is removed
 
            from the Target.  In either case, the Target's TargetBytes
 
            field and the TargetList's PBytes field must be reduced
 
            accordingly.  The ST agent then routes toward the first
 
            next-hop IP address in the option, if one exists, or toward
 
            the target otherwise.  Note that the target's IP address is
 
            not included as the last entry in the list.
 
 
 
            With a strict source route (PCode = 19) each ST agent first
 
            examines the first next-hop IP address in the option.  If
 
            the address is not (one of) the address of the current ST
 
            agent, a routing error has occurred and should be reported
 
            with the appropriate reason code.  Otherwise that entry is
 
            removed, and the PBytes field reduced by four (4).  If the
 
            resulting PBytes field contains 4 (i.e., there are no more
 
            next-hop IP addresses) the parameter is removed from the
 
            Target.  In either case, the Target's TargetBytes field and
 
            the TargetList's PBytes field must be reduced accordingly.
 
            The ST agent then routes toward the first next-hop IP
 
            address in the option, if one exists, or toward the target
 
            otherwise.  Note that the target's IP address is not
 
            included as the last entry in the list.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |      PCode    |    4+4*N    |              0              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      next-hop IP address                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                              ...                              :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      next-hop IP address                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                          Figure 35.  SrcRoute
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
            Since it is possible that a single hop between ST agents is
 
            actually composed of multiple IP hops using IP
 
            encapsulation, it might be necessary to also specify an IP
 
            source routing option.  Two additional PCodes are used in
 
            this case.  See [15] for a description of IP routing
 
            options.
 
 
 
            An IP Loose Source Route (PCode = 16) indicates that PDUs
 
            for the next-hop ST agent should be encapsulated in IP and
 
            that the IP datagram should contain an IP Loose Source Route
 
            constructed from the list of IP router addresses contained
 
            in this option.
 
 
 
            An IP Strict Source Route (PCode = 17) is similarly used
 
            when the corresponding IP Strict Source Route option should
 
            be constructed.
 
 
 
            Consequently, the "routing parameter" may consist of a
 
            sequence of one or more separate parameters with PCodes 16,
 
            17, 18, or 19.
 
 
 
 
 
        4.2.2.15.        Target and TargetList
 
 
 
            Several control messages use a parameter called TargetList
 
            (PCode = 20), which contains information about the targets
 
            to which the message pertains.  For each Target in the
 
            TargetList, the information includes the IP addresses of the
 
            target, the SAP applicable to the next higher layer
 
            protocol, the length of the SAP (SAPBytes), and zero or more
 
            optional SrcRoute parameters;  see Section 4.2.2.14 (page
 
            95).  Consequently, a Target structure can be of variable
 
            length.  Each entry has the format shown in Figure 36.
 
 
 
            The optional SrcRoute parameter is only meaningful in a
 
            CONNECT messages;  if present in other messages, they are
 
            ignored.  Note that the presence of SrcRoute parameter(s)
 
            reduces the number of Targets that can be contained in a
 
            TargetList since the maximum size of a TargetList is 256
 
            bytes.  Consequently an implementation should be prepared to
 
            accept multiple TargetLists in a single message.
 
 
 
              TargetIPAddress is the IP Address of the Target.
 
 
 
              TargetBytes is the length of the Target structure,
 
              beginning with the TargetIPAddress and including any
 
              SrcRoute Parameter(s).
 
 
 
              SAPBytes is the length of the SAP, excluding any padding
 
              required to maintain 32-bit alignment.  I.e.,
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
              there would be no padding required for SAPs with lengths
 
              of 2, 6, etc., bytes.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        TargetIPAddress                        |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  TargetBytes  |  SAPBytes    |                              :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-            -+-+-+-+-+-+-+-+-+
 
  :                              SAP              :    Padding    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    SrcRoute Parameter(s)                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                          Figure 36.  Target
 
 
 
 
 
            We assume that the ST agents must know the maximum packet
 
            size of the networks to which they are connected (the MTU),
 
            and those maximum sizes will restrict the number of targets
 
            that can be specified in control messages.  We feel that
 
            this is not a serious drawback.  High bandwidth networks
 
            such as the Ethernet or the Terrestrial Wideband network
 
            support packet sizes large enough to allow well over one
 
            hundred targets to be specified, and we feel that
 
            conferences with a larger number of participants will not
 
            occur for quite some time.  Furthermore, we expect that
 
            future higher bandwidth networks will allow even larger
 
            packet sizes.  It may be desirable to send ST voice data
 
            packets in individual B-ISDN ATM cells, which are small, but
 
            network services on ATM will provide "adaptation layers" to
 
            implement network-level fragmentation that may be used to
 
            carry larger ST control messages.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 20  |    PBytes    |        TargetCount = N        |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                            Target 1                          :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                              ...                              :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                            Target N                          :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                        Figure 37.  TargetList
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
            If a message must pass across a network whose maximum packet
 
            size is too small, the message must be broken up into
 
            multiple messages, each of which carries part of the
 
            TargetList.  The function of the message can still be
 
            performed even if the message is so partitioned.  The effect
 
            in this partitioning is to compromise the performance, but
 
            still allows proper operation.  For example, if a CONNECT
 
            message were partitioned, the first CONNECT would establish
 
            the stream, and the rest of the CONNECTs would be processed
 
            as additions to the first.  The routing decisions might
 
            suffer, however, since they would be made on partial
 
            information.  Nevertheless, the stream would be created.
 
 
 
 
 
        4.2.2.16.        UserData
 
 
 
            The UserData parameter (PCode = 21) is an optional parameter
 
            that may be used by the next higher protocol or an
 
            application to convey arbitrary information to its peers.
 
            Note that since the size of control messages is limited by
 
            the smallest MTU in the path to the target(s), the maximum
 
            size of this parameter cannot be specified a priori.  If the
 
            parameter is too large for some network's MTU, a
 
            UserDataSize error will occur.  The parameter must be padded
 
            to a multiple of 32 bits.
 
 
 
              UserBytes specifies the number of valid UserInformation
 
              bytes.
 
 
 
              UserInformation is arbitrary data meaningful to the next
 
              higher protocol layer or application.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  PCode = 21  |    PBytes    |          UserBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                        UserInformation        :    Padding    |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                        Figure 38.  UserData
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
4.2.3.        ST Control Message PDUs
 
 
 
        Each control message is described in a following section.  See
 
        Appendix 1 (page 147) for an explanation of the notation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.1.        ACCEPT
 
 
 
            ACCEPT (OpCode = 1) is issued by a target as a positive
 
            response to a CONNECT message.  It implies that the target
 
            is prepared to accept data from the origin along the stream
 
            that was established by the CONNECT.  The ACCEPT includes
 
            the FlowSpec that contains the cumulative information that
 
            was calculated by the intervening ST agents as the CONNECT
 
            made its way from the origin to the target, as well as any
 
            modifications made by the application at the target.  The
 
            ACCEPT is relayed by the ST agents from the target to the
 
            origin along the path established by the CONNECT but in the
 
            reverse direction.  The ACCEPT must be acknowledged with an
 
            ACK at each hop.
 
 
 
            The FlowSpec is not modified on this trip from the target
 
            back to the origin.  Since the cumulative FlowSpec
 
            information can be different for different targets, no
 
            attempt is made to combine the ACCEPTs from the various
 
            targets.  The TargetList included in each ACCEPT contains
 
            the IP address of only the target that issued the ACCEPT.
 
 
 
            Any SrcRoute parameters in the TargetList are ignored.
 
 
 
            Since an ACCEPT might be the first response from a next-hop
 
            on a control link (due to network reordering), the SVLId
 
            field may be the first source of the Virtual Link Identifier
 
            to be used in the RVLId field of subsequent control messages
 
            sent to that next-hop.
 
 
 
            When the FDx option has been selected to setup a second
 
            stream in the reverse direction, the ACCEPT will contain
 
            both RFlowSpec and RName parameters.  Each agent should
 
            update the state tables for the reverse stream with this
 
            information.
 
 
 
              TSR (bits 14 and 15) specifies the target's response for
 
              the use of data packet timestamps; see Section 4 (page
 
              76).  Its values and semantics are:
 
 
 
                  00  Not implemented.
 
                  01  No timestamps are permitted.
 
                  10  Timestamps must always be present.
 
                  11  Timestamps may optionally be present.
 
 
 
              Reference contains a number assigned by the agent sending
 
              the ACCEPT for use in the acknowledging ACK.
 
 
 
              LnkReference is the Reference number from the
 
              corresponding CONNECT or CHANGE.
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 1  |    0    |TSR|          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |              0              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    TargetList Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    RecordRoute Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      RFlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        RName Parameter                      !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      UserData Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                  Figure 39.  ACCEPT Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.2.        ACK
 
 
 
            ACK (OpCode = 2) is used to acknowledge a request.  The
 
            Reference in the header is the Reference number of the
 
            control message being acknowledged.
 
 
 
            Since a ACK might be the first response from a next-hop on a
 
            control link, the SVLId field may be the first source of the
 
            Virtual Link Identifier to be used in the RVLId field of
 
            subsequent control messages sent to that next-hop.
 
 
 
              ReasonCode is usually NoError, but other possibilities
 
              exist, e.g., DuplicateIgn.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 2  |      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |          ReasonCode          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                              0                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                    Figure 40.  ACK Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.3.        CHANGE-REQUEST
 
 
 
            CHANGE-REQUEST (OpCode = 4) is used by an intermediate or
 
            target agent to request that the origin change the FlowSpec
 
            of an established stream.  The CHANGE-REQUEST message is
 
            propagated hop-by-hop to the origin, with an ACK at each
 
            hop.
 
 
 
            Any SrcRoute parameters in the targets of the TargetList are
 
            ignored.
 
 
 
              G (bit 8) is used to request a global, stream-wide
 
              change;  the TargetList parameter may be omitted when the
 
              G bit is specified.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 4  |G|      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |              0              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    TargetList Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      UserData Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
              Figure 41.  CHANGE-REQUEST Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.4.        CHANGE
 
 
 
            CHANGE (OpCode = 3) is used to change the FlowSpec of an
 
            established stream.  Parameters are the same as for CONNECT
 
            but the TargetList is not required.  The CHANGE message is
 
            processed similarly to the CONNECT message, except that it
 
            travels along the path of an established stream.
 
 
 
            If the change to the FlowSpec is in a direction that makes
 
            fewer demands of the involved networks, then the change has
 
            a high probability of success along the path of the
 
            established stream.  Each ST agent receiving the CHANGE
 
            message makes the necessary requested changes to the network
 
            resource allocations, and if successful, propagates the
 
            CHANGE message along the established paths.  If the change
 
            cannot be made then the ST agent must recover using
 
            DISCONNECT and REFUSE messages as in the case of a network
 
            failure.  Note that a failure to change the resources
 
            requested for a specific target(s) should not cause other
 
            targets in the stream to be deleted.  The CHANGE must be
 
            ACKed.
 
 
 
            If the CHANGE is a result of a CHANGE-REQUEST the
 
            LnkReference field of the CHANGE will contain the value from
 
            the Reference field of the CHANGE-REQUEST.
 
 
 
            It is recommended that the origin only have one outstanding
 
            CHANGE per target;  if the application requests more that
 
            one to be outstanding at a time, it is the application's
 
            responsibility to deal with any sequencing problems that may
 
            arise.
 
 
 
            Any SrcRoute parameters in the targets of the
 
            TargetListParameter are ignored.
 
 
 
              G (bit 8) is used to request a global, stream-wide
 
              change;  the TargetList parameter may be omitted when the
 
              G bit is specified.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 3  |G|      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |              0              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    TargetList Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      UserData Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                  Figure 42.  CHANGE Control Message
 
 
 
 
 
 
 
 
 
        4.2.3.5.        CONNECT
 
 
 
            CONNECT (OpCode = 5) requests the setup of a new stream or
 
            an addition to or recovery of an existing stream.  Only the
 
            origin can issue the initial set of CONNECTs to setup a
 
            stream, and the first CONNECT to each next-hop is used to
 
            convey the initial suggestion for a HID.  If the stream's
 
            data packets will be sent to some set of next-hop ST agents
 
            by multicast then the CONNECTs to that set must suggest the
 
            same HID.  Otherwise, the HIDs in the various CONNECTs can
 
            be different.
 
 
 
            The CONNECT message must fit within the maximum allowable
 
            packet size (MTU) for the intervening network.  If a CONNECT
 
            message is too large, it must be fragmented into multiple
 
            CONNECT messages by partitioning the TargetList; see Section
 
            4.2 (page 77).  Any UserData parameter will be replicated in
 
            each fragment for delivery to all targets.
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
            The next-hop can initially respond with any of the following
 
            five responses:
 
 
 
            1  ERROR-IN-REQUEST, which implies that the CONNECT was
 
                not valid and has been ignored,
 
 
 
            2  ACK, which implies that the CONNECT with the H bit not
 
                set was valid and is being processed,
 
 
 
            3  HID-APPROVE, which implies that the CONNECT with the
 
                H bit set was valid, and the suggested HID can be
 
                used or was deferred,
 
 
 
            4  HID-REJECT, which implies that the CONNECT with the H
 
                bit set was valid but the suggested HID cannot be
 
                used and another must be suggested in a subsequent
 
                HID-CHANGE message, or
 
 
 
            5  REFUSE, which implies that the CONNECT was valid but
 
                the included list of targets in the REFUSE cannot be
 
                processed for the stated reason.
 
 
 
            The next-hop will later relay back either an ACCEPT or
 
            REFUSE from each target not already specified in the REFUSE
 
            of case 5 above (note multiple targets may be included in a
 
            single REFUSE message).
 
 
 
            An intermediate ST agent that receives a CONNECT selects the
 
            next-hop ST agents, partitions the TargetList accordingly,
 
            reserves network resources in the direction toward the
 
            next-hop, updating the FlowSpec accordingly (see Section
 
            4.2.2.3 (page 81)), selects a proposed HID for each next-
 
            hop, and sends the resulting CONNECTs.
 
 
 
            If the intermediate ST agent that is processing a CONNECT
 
            fails to find a route to a target, then it responds with a
 
            REFUSE with the appropriate reason code.  If the next-hop to
 
            a target is by way of the network from which it received the
 
            CONNECT, then it sends a NOTIFY with the appropriate reason
 
            code (RouteBack).  In either case, the TargetList specifies
 
            the affected targets.  The intermediate ST agent will only
 
            route to and propagate a CONNECT to the targets for which it
 
            does not issue either an ERROR-IN-REQUEST or a REFUSE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
            The processing of a received CONNECT message requires care
 
            to avoid routing loops that could result from delays in
 
            propagating routing information among ST agents.  If a
 
            received CONNECT contains a new Name, a new stream should be
 
            created (unless the Virtual Link Identifier matches a known
 
            link in which case an ERROR-IN-REQUEST should be sent).  If
 
            the Name is known, there are four cases:
 
 
 
            1  the Virtual Link Identifier matches and the Target
 
                matches a current Target -- the duplicate target
 
                should be ignored.
 
 
 
            2  the Virtual Link Identifier matches but the Target is
 
                new -- the stream should be expanded to include the
 
                new target.
 
 
 
            3  the Virtual Link Identifier differs and the Target
 
                matches a current Target -- an ERROR-IN-REQUEST
 
                message should be sent specifying that the target is
 
                involved in a routing loop.  If a reroute, the old
 
                path will eventually timeout and send a DISCONNECT;
 
                a subsequent retransmission of the rerouted CONNECT
 
                will then be processed under case 2 above.
 
 
 
            4  the Virtual Link Identifier differs but the Target is
 
                new -- a new (instance of the) stream should be
 
                created for the target that is deliberately part of
 
                a loop using a SrcRoute parameter.
 
 
 
 
 
            Note that the test for a known or matching Target includes
 
            comparing any SrcRoute parameter that might be present.
 
 
 
            Option bits are specified by either the origin's service
 
            user or by an intermediate agent, depending on the specific
 
            option.  Bits not specified below are currently unspecified,
 
            and should be set to zero (0) by the origin agent and not
 
            changed by other agents unless those agents know their
 
            meaning.
 
 
 
              H (bit 8) is used for the HID Field option; see Section
 
              3.6.1 (page 44).  It is set to one (1) only if the HID
 
              field contains either zero (when the HID selection is
 
              being deferred), or the proposed HID.  This bit is zero
 
              (0) if the HID field does not contain valid data and
 
              should be ignored.
 
 
 
              P (bit 9) is used for the PTP option; see Section 3.6.2
 
              (page 44).
 
 
 
              S (bit 10) is used for the NoRecovery option; see Section
 
              3.6.4 (page 46).
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
              TSP (bits 14 and 15) specifies the origin's proposal for
 
              the use of data packet timestamps; see Section 4 (page
 
              76).  Its values and semantics are:
 
 
 
                  00  No proposal.
 
                  01  Cannot insert timestamps.
 
                  10  Must always insert timestamps.
 
                  11  Can insert timestamps if requested.
 
 
 
              RVLId, the receiver's Virtual Link Identifier, is set to
 
              zero in all CONNECT messages until its value arrives in
 
              the SVLId field of an acknowledgment to the CONNECT.
 
 
 
              SVLId, the sender's Virtual Link Identifier, is set to a
 
              value chosen by each hop to facilitate efficient
 
              dispatching of subsequent control messages.
 
 
 
              HID is the identifier that will be used with data packets
 
              moving through the stream in the direction from the
 
              origin to the targets.  It is a hop-by-hop shorthand
 
              identifier for the stream's Name, and is chosen by each
 
              agent for the branch to the next-hop agents.  The
 
              contents of the HID field are only valid, and a HID-
 
              REJECT or HID-APPROVE reply may only be sent, when the
 
              HID Field option (H bit) is set (1).  If the HID Field
 
              option is specified and the proposed HID is zero, the
 
              selection of the HID is deferred to the receiving next-
 
              hop agent.  If the HID Field option is not set (H bit is
 
              0), then the HID field does not contain valid data and
 
              should be ignored;  see Section 3.6.1 (page 44).
 
 
 
              TargetList is the list of IP addresses of the target
 
              processes.  It is of arbitrary size up to the maximum
 
              allowed for packets traveling across the specific
 
              network.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 5  |H|P|S|  0  |TSP|          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId/0            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |            HID/0            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                      Origin Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      TargetList Parameter(s)                  :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                        Group Parameter                        :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                  MulticastAddress Parameter                  :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    RecordRoute Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      RFlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                        RGroup Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        RHID Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      UserData Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                  Figure 43.  CONNECT Control Message
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.6.        DISCONNECT
 
 
 
            DISCONNECT (OpCode = 6) is used by an origin to tear down an
 
            established stream or part of a stream, or by an
 
            intermediate agent that detects a failure between itself and
 
            its previous-hop, as distinguished by the ReasonCode.  The
 
            DISCONNECT message specifies the list of targets that are to
 
            be disconnected.  An ACK is required in response to a
 
            DISCONNECT message.  The DISCONNECT message is propagated
 
            all the way to the specified targets.  The targets are
 
            expected to terminate their participation in the stream.
 
 
 
            Note that in the case of a failure it may be advantageous to
 
            retain state information as the stream should be repaired
 
            shortly;  see Section 3.7.2 (page 52).
 
 
 
              G (bit 8) is used to request a DISCONNECT of all the
 
              stream's targets; the TargetList parameter may be omitted
 
              when the G bit is set (1).
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 6  |G|      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |          ReasonCode          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    TargetList Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      UserData Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                Figure 44.  DISCONNECT Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.7.        ERROR-IN-REQUEST
 
 
 
            ERROR-IN-REQUEST (OpCode = 7) is sent in acknowledgment to a
 
            request in which an error is detected.  No action is taken
 
            on the erroneous request and no state information for the
 
            stream is retained.  Consequently it is appropriate for the
 
            SVLId to be zero (0).  No ACK is expected.
 
 
 
            An ERROR-IN-REQUEST is never sent in response to either an
 
            ERROR-IN-REQUEST or an ERROR-IN-RESPONSE;  however, the
 
            event should be logged for diagnostic purposes.  The
 
            receiver of an ERROR-IN-REQUEST is encouraged to try again
 
            without waiting for a retransmission timeout.
 
 
 
              Reference is the Reference number of the erroneous
 
              request.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 7  |      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId/0            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |          ReasonCode          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                          ErroredPDU                          :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      TargetList Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
              Figure 45.  ERROR-IN-REQUEST Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.8.        ERROR-IN-RESPONSE
 
 
 
            ERROR-IN-RESPONSE (OpCode = 8) is sent in acknowledgment to
 
            a response in which an error is detected.  No ACK is
 
            expected.  Action taken by the requester and responder will
 
            vary with the nature of the request.
 
 
 
            An ERROR-IN-REQUEST is never sent in response to either an
 
            ERROR-IN-REQUEST or an ERROR-IN-RESPONSE;  however, the
 
            event should be logged for diagnostic purposes.  The
 
            receiver of an ERROR-IN-RESPONSE is encouraged to try again
 
            without waiting for a retransmission timeout.
 
 
 
            Reference identifies the erroneous response.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 8  |      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |          ReasonCode          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                          ErroredPDU                          :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      TargetList Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
            Figure 46.  ERROR-IN-RESPONSE Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.9.        HELLO
 
 
 
            HELLO (OpCode = 9) is used as part of the ST failure
 
            detection mechanism; see Section 3.7.1.2 (page 49).
 
 
 
              R (bit 8) is used for the Restarted bit.
 
 
 
              Reference is non-zero to inform the receiver that an ACK
 
              should be promptly sent so that the sender can update its
 
              round-trip time estimates.  If the Reference is zero, no
 
              ACK should be sent.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 9  |R|      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId/0            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference/0          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |              0              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                          HelloTimer                          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        OriginTimestamp                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                  Figure 47.  HELLO Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.10.        HID-APPROVE
 
 
 
            HID-APPROVE (OpCode = 10) is used by the agent that is
 
            responding to either a CONNECT or HID-CHANGE to agree to
 
            either use the proposed HID or to the addition or deletion
 
            of the specified HID.  In all cases but deletion, the newly
 
            approved HID is returned in the HID field;  for deletion,
 
            the HID field must be set to zero.  The HID-APPROVE is the
 
            acknowledgment of a CONNECT or HID-CHANGE.
 
 
 
            The optional FreeHIDs parameter provides the previous-hop
 
            agent with hints about what other HIDs are acceptable in
 
            case a multicast HID is being negotiated;  see Section
 
            4.2.2.4 (page 84).
 
 
 
            Since a HID-APPROVE might be the first response from a
 
            next-hop on a control link, the SVLId field may be the first
 
            source of the Virtual Link Identifier to be used in the
 
            RVLId field of subsequent control messages sent to that
 
            next-hop.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 10  |      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |              HID              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                              0                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FreeHIDs Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                Figure 48.  HID-APPROVE Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.11.        HID-CHANGE-REQUEST
 
 
 
            HID-CHANGE-REQUEST (OpCode = 12) is used by a next-hop agent
 
            that would like, for administrative reasons, to change the
 
            HID that is in use.  The receiving previous-hop agent
 
            acknowledges the request by either an ERROR-IN-REQUEST if it
 
            is unwilling to make the requested change, or with a HID-
 
            CHANGE if it can accommodate the request.
 
 
 
              A (bit 8) is used to indicate that the specified HID
 
              should be included in the set of HIDs for the specified
 
              Name.  When a HID is added, the acknowledging HID-APPROVE
 
              should contain a HID field whose contents is the HID just
 
              added.
 
 
 
              D (bit 9) is used to indicate that the specified HID
 
              should be removed in the set of HIDs for the specified
 
              Name.  When a HID is deleted, the acknowledging HID-
 
              APPROVE should contain a HID field whose contents is
 
              zero.  Note that the Reference field may be used to
 
              determine the HID that has been deleted.
 
 
 
              If neither bit is set, the specified HID should replace
 
              that currently in use with the specified Name.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 12  |A|D|    0    |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |              HID              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                              0                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
            Figure 49.  HID-CHANGE-REQUEST Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.12.        HID-CHANGE
 
 
 
            HID-CHANGE (OpCode = 11) is used by the agent that issued a
 
            CONNECT and received a HID-REJECT to attempt to negotiate a
 
            suitable HID.  The HID in the HID-CHANGE message must be
 
            different from that in the CONNECT, or any previous HID-
 
            CHANGE messages for the given Name.  The agent receiving the
 
            HID-CHANGE must respond with a HID-APPROVE if the new HID is
 
            suitable, or a HID-REJECT if it is not.  In case of an
 
            error, either an ERROR-IN-REQUEST or a REFUSE may be
 
            returned as an acknowledgment.
 
 
 
            Since an agent may send CONNECT messages with the same HID
 
            to several next-hops in order to use multicast data
 
            transfer, any HID-CHANGE must also be sent to the same set
 
            of next-hops.  Therefore, a next-hop agent must be prepared
 
            to receive a HID-CHANGE before or after it has sent a HID-
 
            APPROVE response to the CONNECT or a previous HID-CHANGE.
 
            Only the last HID-CHANGE is relevant.  The previous-hop
 
            agent will ignore HID-APPROVE or HID-REJECT messages to
 
            previous CONNECT or HID-CHANGE messages.
 
 
 
            A DISCONNECT can be sent instead of a HID-CHANGE, or a
 
            REFUSE can be sent instead of a HID-APPROVE or HID-REJECT,
 
            to terminate fatally the HID negotiation and the agent's
 
            knowledge of the stream.
 
 
 
            The A and D bits are used to change a HID, e.g., when adding
 
            a new next-hop to a multicast group, in such a way that data
 
            packets that are flowing through the network will not be
 
            mishandled due to a race condition in processing the HID-
 
            CHANGE messages between the previous-hop and its next-hops.
 
            An implementation may choose to limit the number of
 
            simultaneous HIDs associated with a stream, but must allow
 
            at least two.
 
 
 
              A (bit 8) is used to indicate that the specified HID
 
              should be included in the set of HIDs for the specified
 
              Name.  When a HID is added, the acknowledging HID-APPROVE
 
              should contain a HID field whose contents is the HID just
 
              added.
 
 
 
              D (bit 9) is used to indicate that the specified HID
 
              should be removed from the set of HIDs for the specified
 
              Name.  When a HID is deleted, the acknowledging HID-
 
              APPROVE should contain a HID field whose contents is
 
              zero.  Note that the Reference field may be used to
 
              determine the HID that has been deleted.
 
 
 
              If neither bit is set, the specified HID should replace
 
              that currently in use for the specified Name.
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 11  |A|D|    0    |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |              HID              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                              0                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                Figure 50.  HID-CHANGE Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.13.        HID-REJECT
 
 
 
            HID-REJECT (OpCode = 13) is used as an acknowledgment that a
 
            CONNECT or HID-CHANGE was received and is being processed,
 
            but means that the HID contained in the CONNECT or HID-
 
            CHANGE is not acceptable.  Upon receipt of this message the
 
            agent that issued the CONNECT or HID-CHANGE must now issue a
 
            HID-CHANGE to attempt to find a suitable HID.  The HID-
 
            CHANGE can cause another HID-REJECT but eventually the HID-
 
            CHANGE must be acknowledged with a HID-APPROVE to end
 
            successfully the HID negotiation.  The agent that issued the
 
            HID-REJECT may not issue an ACCEPT before it has found an
 
            acceptable HID.
 
 
 
            Since a HID-REJECT might be the first response from a next-
 
            hop on a control link, the SVLId field may be the first
 
            source of the Virtual Link Identifier to be used in the
 
            RVLId field of subsequent control messages sent to that
 
            next-hop.
 
 
 
            Either agent may terminate the negotiation by issuing either
 
            a DISCONNECT or a REROUTE.  The agent that issued the HID-
 
            REJECT may issue a REFUSE, or REROUTE at any time after the
 
            HID-REJECT.  In this case, the stream cannot be created, the
 
            HID negotiation need not proceed, and the previous-hop need
 
            not transmit any further messages;  any further messages
 
            that are received should be ignored.
 
 
 
            The optional FreeHIDs parameter provides the previous-hop
 
            agent with hints about what HIDs would have been acceptable;
 
            see Section 4.2.2.4 (page 84).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 13  |      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |          RejectedHID          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                              0                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FreeHIDs Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                Figure 51.  HID-REJECT Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.14.        NOTIFY
 
 
 
            NOTIFY (OpCode = 14) is issued by a an agent to inform other
 
            agents, the origin, or target(s) of events that may be
 
            significant.  The action taken by the receiver of a NOTIFY
 
            depends on the ReasonCode.  Possible events are suspected
 
            routing problems or resource allocation changes that occur
 
            after a stream has been established.  These changes occur
 
            when network components fail and when competing streams
 
            preempt resources previously reserved by a lower precedence
 
            stream.  We also anticipate that NOTIFY can be used in the
 
            future when additional resources become available, as is the
 
            case when network components recover or when higher
 
            precedence streams are deleted.
 
 
 
            NOTIFY may contain a FlowSpec that reflects that revised
 
            guarantee that can be promised to the stream.  NOTIFY may
 
            also identify those targets that are affected by the change.
 
            In this way, NOTIFY is similar to ACCEPT.
 
 
 
            NOTIFY may be relayed by the ST agents back to the origin,
 
            along the path established by the CONNECT but in the reverse
 
            direction.  It is up to the origin to decide whether a
 
            CHANGE should be submitted.
 
 
 
            When NOTIFY is received at the origin, the application
 
            should be notified of the target and the change in resources
 
            allocated along the path to it, as specified in the FlowSpec
 
            contained in the NOTIFY message.  The application may then
 
            use the information to either adjust or terminate the
 
            portion of the stream to each affected target.
 
 
 
            The NOTIFY may be propagated beyond the previous-hop or
 
            next-hop agent; it must be acknowledged with an ACK.
 
 
 
              Reference contains a number assigned by the agent sending
 
              the NOTIFY for use in the acknowledging ACK.
 
 
 
              ReasonCode identifies the reason for the notification.
 
 
 
              LnkReference, when non-zero, is the Reference number from
 
              a command that is the subject of the notification.
 
 
 
              HID is present when the notification is related to a HID.
 
 
 
              Name is present when the notification is related to a
 
              stream.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
              NextHopIPAddress is an optional parameter and contains
 
              the IP address of a suggested next-hop ST agent.
 
 
 
              TargetList is present when the notification is related to
 
              one or more targets.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 14  |      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |          ReasonCode          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                          ErroredPDU                          :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        HID Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                  NextHopIPAddress Parameter                  !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    RecordRoute Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      TargetList Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                Figure 52.  NOTIFY Control Message
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.15.        REFUSE
 
 
 
            REFUSE (OpCode = 15) is issued by a target that either does
 
            not wish to accept a CONNECT message or wishes to remove
 
            itself from an established stream.  It might also be issued
 
            by an intermediate agent in response to a CONNECT or CHANGE
 
            either to terminate fatally a failing HID negotiation, to
 
            terminate a routing loop, or when a satisfactory next-hop to
 
            a target cannot be found.  It may also be a separate command
 
            when an existing stream has been preempted by a higher
 
            precedence stream or an agent detects the failure of a
 
            previous-hop, next-hop, or the network between them.  In all
 
            cases, the TargetList specifies the targets that are
 
            affected by the condition.  Each REFUSE must be acknowledged
 
            by an ACK.
 
 
 
            The REFUSE is relayed by the agents from the originating
 
            agent to the origin (or intermediate agent that created the
 
            CONNECT or CHANGE) along the path traced by the CONNECT.
 
            The agent receiving the REFUSE will process it differently
 
            depending on the condition that caused it, as specified in
 
            the ReasonCode field.  In some cases, such as if a next-hop
 
            cannot obtain resources, the agent can release any resources
 
            reserved exclusively for transmissions in the stream in
 
            question to the target specified in the TargetList, and the
 
            previous-hop can attempt to find an alternate route.  In
 
            some cases, such as a routing failure, the previous-hop
 
            cannot determine where the failure occurred, and must
 
            propagate the REFUSE back to the origin, which can attempt
 
            recovery of the stream by issuing a new CONNECT.
 
 
 
            No special effort is made to combine multiple REFUSE
 
            messages since it is considered most unlikely that separate
 
            REFUSEs will happen to both pass through an agent at the
 
            same time and be easily combined, e.g., have identical
 
            ReasonCodes and parameters.
 
 
 
            Since a REFUSE might be the first response from a next-hop
 
            on a control link, the SVLId field may be the first source
 
            of the Virtual Link Identifier to be used in the RVLId field
 
            of subsequent control messages sent to that next-hop.
 
 
 
              Reference contains a number assigned by the agent sending
 
              the REFUSE for use in the acknowledging ACK.
 
 
 
              LnkReference is either the Reference number from the
 
              corresponding CONNECT or CHANGE, if it is the result of
 
              such a message, or zero when the REFUSE was originated as
 
              a separate command.
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 15  |      0      |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId            |            SVLId            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |          ReasonCode          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                      DetectorIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    TargetList Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                          ErroredPDU                          :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                    RecordRoute Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      UserData Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                  Figure 53.  REFUSE Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.16.        STATUS
 
 
 
            STATUS (OpCode = 16) is used to inquire about the existence
 
            of a particular stream identified by either a HID (H bit
 
            set) or Name (Name Parameter present).
 
 
 
            When a stream has been identified, a STATUS-RESPONSE is
 
            returned that will contain the specified HID and/or Name but
 
            no other parameters if the specified stream is unknown, or
 
            will otherwise contain the current HID(s), Name, FlowSpec,
 
            TargetList, and possibly Group(s) of the stream.  Note that
 
            if a stream has no current HID, the HID field in the
 
            STATUS-RESPONSE will contain zero;  it will contain the
 
            first, or only, HID if a valid HID exists; additional valid
 
            HIDs will be returned in HID parameters.
 
 
 
            Use of STATUS is intended for diagnostic purposes and to
 
            assist in stream cleanup operations.  Note that if both a
 
            HID and Name are specified, but they do not correspond to
 
            the same stream, an ERROR-IN-REQUEST with the appropriate
 
            reason code (InconsistHID) would be returned.
 
 
 
            It is possible in cases of multiple failures or network
 
            partitioning for an ST agent to have information about a
 
            stream after the stream has either ceased to exist or has
 
            been rerouted around the agent.  When an agent concludes
 
            that a stream has not been used for a period of time and
 
            might no longer be valid, it can probe the stream's
 
            previous-hop or next-hop(s) to see if they believe that the
 
            stream still exists through the interrogating agent.  If
 
            not, those hops would reply with a STATUS-RESPONSE that
 
            contains the HID and/or Name but no other parameters;
 
            otherwise, if the stream is still valid, the hops would
 
            reply with the parameters of the stream.
 
 
 
              H (bit 8) is used to indicate whether (when 1) or not
 
              (when 0) a HID is present in the HID field.
 
 
 
              Q (bit 9) is set to one (1) for remote diagnostic
 
              purposes when the receiving agent should return a
 
              stream's parameters, whether or not the source of the
 
              message is believed to be a previous-hop or next-hop in
 
              the specified stream.  Note that this use has potential
 
              for disclosure of sensitive information.
 
 
 
              RVLId and SVLId may either or both be zero when STATUS is
 
              used for diagnostic purposes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 16  |H|Q|    0    |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId/0            |            SVLId/0            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |            HID/0            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                              0                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                  Figure 54.  STATUS Control Message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
        4.2.3.17.        STATUS-RESPONSE
 
 
 
            STATUS-RESPONSE (OpCode = 17) is the reply to a STATUS
 
            message.  If the stream specified in the STATUS message is
 
            not known, the STATUS-RESPONSE will contain the specified
 
            HID and/or Name but no other parameters.  It will otherwise
 
            contain the current HID(s), Name, FlowSpec, TargetList, and
 
            possibly Group of the stream.  Note that if a stream has no
 
            current HID, the H bit in the STATUS-RESPONSE will be zero.
 
            The HID field will contain the first, or only, HID if a
 
            valid HID exists; additional valid HIDs will be returned in
 
            HID parameters.
 
 
 
              H (bit 8) is used to indicate whether (when 1) or not
 
              (when 0) a HID is present in the HID field.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |  OpCode = 17  |H|Q|    0    |          TotalBytes          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            RVLId/0            |            SVLId/0            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |          Reference          |        LnkReference          |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                        SenderIPAddress                      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |            Checksum          |            HID/0            |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |                              0                              |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        Name Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      FlowSpec Parameter                      :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                        Group Parameter                        :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  !                        HID Parameter                        !
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  :                      TargetList Parameter                    :
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                  Figure 55.  STATUS-RESPONSE Control Message
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  4.3.      Suggested Protocol Constants
 
 
 
      The ST Protocol uses several fields that must have specific values
 
      for the protocol to work, and also several values that an
 
      implementation must select.  This section specifies the required
 
      values and suggests initial values for others.  It is recommended
 
      that the latter be implemented as variables so that they may be
 
      easily changed when experience indicates better values.
 
      Eventually, they should be managed via the normal network
 
      management facilities.
 
 
 
      ST uses IP Version Number 5.
 
 
 
      When encapsulated in IP, ST uses IP Protocol Number 5.
 
 
 
 
 
      Value  ST Command Message Name      Value    ST Element Name
 
      ------- -----------------------      ------- ---------------------
 
 
 
        1    ACCEPT                          1    ErroredPDU
 
        2    ACK                            2    FlowSpec
 
        3    CHANGE                          3    FreeHIDs
 
        4    CHANGE-REQUEST                  4    Group
 
        5    CONNECT                        5    HID
 
        6    DISCONNECT                      6    MulticastAddress
 
        7    ERROR-IN-REQUEST                7    Name
 
        8    ERROR-IN-RESPONSE              8    NextHopIPAddress
 
        9    HELLO                          9    Origin
 
        10    HID-APPROVE                    10    OriginTimestamp
 
        11    HID-CHANGE                    11    RecordRoute
 
        12    HID-CHANGE-REQUEST            12    RFlowSpec
 
        13    HID-REJECT                    13    RGroup
 
        14    NOTIFY                        14    RHID
 
        15    REFUSE                        15    RName
 
        16    STATUS                        16    SrcRoute, IP Loose
 
        17    STATUS-RESPONSE                17    SrcRoute, IP Strict
 
                                            18    SrcRoute, ST Loose
 
                                            19    SrcRoute, ST Strict
 
                                            20    TargetList
 
                                            21    UserData
 
 
 
 
 
      A good choice for the minimum number of bits in the FreeHIDBitMask
 
      element of the FreeHIDs parameter is not yet known.  We suggest a
 
      minimum of 64 bits, i.e., N in Figure 25 has a value of two (2).
 
 
 
 
 
      HID value zero (0) is reserved for ST Control Messages.  HID
 
      values 1-3 are reserved for future use.
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
      VLId value zero (0) may only be used in the RVLId field of an ST
 
      Control Message when the appropriate value has not yet been
 
      received from the other end of the virtual link;' except for an
 
      ERROR-IN-REQUEST or diagnostic message, the SVLId field may never
 
      contain a value of zero except in a diagnostic message.  VLId
 
      value 1 is reserved for use with HELLO messages by those agents
 
      whose implementation wishes to have all HELLOs so identified.
 
      VLId values 2-3 are reserved for future use.
 
 
 
 
 
      The following permanent IP multicast addresses have been assigned
 
      to ST:
 
 
 
        224.0.0.7    All ST routers
 
        224.0.0.8    All ST hosts
 
 
 
      In addition, a block of transient IP multicast addresses,
 
      224.1.0.0 - 224.1.255.255, has been allocated for ST multicast
 
      groups.  Note that in the case of Ethernet, an ST Multicast
 
      address of 224.1.cc.dd maps to an Ethernet Multicast address of
 
      01:00:5E:01:cc:dd (see [6]).
 
 
 
 
 
      SCMP uses retransmission to effect reliability and thus has
 
      several "retransmission timers".  Each "timer" is modeled by an
 
      initial time interval (ToXxx), which gets updated dynamically
 
      through measurement of control traffic, and a number of times
 
      (NXxx) to retransmit a message before declaring a failure.  All
 
      time intervals are in units of milliseconds.
 
 
 
 
 
      Value  Timeout  Name                      Meaning
 
      ------- ---------------------- ----------------------------------
 
 
 
        1000  ToAccept              Initial hop-by-hop timeout for
 
                                    acknowledgment of ACCEPT
 
 
 
          3  NAccept                ACCEPT retries before failure
 
 
 
        1000  ToConnect              Initial hop-by-hop timeout for
 
                                    acknowledgment of CONNECT
 
 
 
          5  NConnect              CONNECT retries before failure
 
 
 
        1000  ToDisconnect          Initial hop-by-hop timeout for
 
                                    acknowledgment of DISCONNECT
 
 
 
          3  NDisconnect            DISCONNECT retries before
 
                                    failure
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
      Value  Timeout  Name                      Meaning
 
      ------- ---------------------- ----------------------------------
 
 
 
        1000  ToHIDAck              Initial hop-by-hop timeout for
 
                                    acknowledgment of
 
                                    HID-CHANGE-REQUEST
 
 
 
          3  NHIDAck                HID-CHANGE-REQUEST retries
 
                                    before failure
 
 
 
        1000  ToHIDChange            Initial hop-by-hop timeout for
 
                                    acknowledgment of HID-CHANGE
 
 
 
          3  NHIDChange            HID-CHANGE retries before
 
                                    failure
 
 
 
        1000  ToNotify              Initial hop-by-hop timeout for
 
                                    acknowledgment of NOTIFY
 
 
 
          3  NNotify                NOTIFY retries before failure
 
 
 
        1000  ToRefuse              Initial hop-by-hop timeout for
 
                                    acknowledgment of REFUSE
 
 
 
          3  NRefuse                REFUSE retries before failure
 
 
 
        1000  ToReroute              Timeout for receipt of ACCEPT or
 
                                    REFUSE from targets during
 
                                    failure recovery
 
 
 
          5  NReroute              CONNECT retries before failure
 
 
 
        5000  ToEnd2End              End-to-End timeout for receipt
 
                                    of ACCEPT or REFUSE from targets
 
                                    by origin
 
 
 
          0  NEnd2End              CONNECT retries before failure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
      Value  Parameter  Name                    Meaning
 
      ------- ---------------------- ----------------------------------
 
 
 
          10  NHIDAbort              Number of rejected HID proposals
 
                                    before aborting the HID
 
                                    negotiation process
 
 
 
      10000  HelloTimerHoldDown    Interval that Restarted bit must
 
                                    be set after ST restart
 
 
 
          5  HelloLossFactor        Number of consecutively missed
 
                                    HELLO messages before declaring
 
                                    link failure
 
 
 
        2000  DefaultRecoveryTimeout Interval between successive
 
                                    HELLOs to/from active neighbors
 
 
 
          2  DefaultHelloFactor    HELLO filtering function factor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
5.      Areas Not Addressed
 
 
 
  There are a number of issues that will need to be addressed in the
 
  long run but are not addressed here.  Some issues are network or
 
  implementation specific.  For example, the management of multicast
 
  groups depends on the interface that a network provides to the ST
 
  agent, and an UP/DOWN protocol based on ST HELLO messages depends on
 
  the details of the ST agents.  Both these examples may impact the ST
 
  implementations, but we feel it is inappropriate to specify them
 
  here.
 
 
 
  In other cases we feel that appropriate solutions are not clear at
 
  this time.  The following are examples of such issues:
 
 
 
  This document does not include a routing mechanism.  We do not feel
 
  that a routing strategy based on minimizing the number of hops from
 
  the source to the destination is necessarily appropriate.  An
 
  alternative strategy is to minimize the consumption of internet
 
  resources within some delay constraints.  Furthermore, it would be
 
  preferable if the routing function were to provide routes that
 
  incorporated bandwidth, delay, reliability, and perhaps other
 
  characteristics, not just connectivity.  This would increase the
 
  likelihood that a selected route would succeed.  This requirement
 
  would probably cause the ST agents to exchange more routing
 
  information than currently implemented.  We feel that further
 
  research and experimentation will be required before an appropriate
 
  routing strategy is well enough defined to be incorporated into the
 
  ST specification.
 
 
 
  Once the bandwidth for a stream has been agreed upon, it is not
 
  sufficient to rely on the origin to transmit traffic at that rate.
 
  The internet should not rely on the origin to operate properly.
 
  Furthermore, even if the origin sources traffic at the agreed rate,
 
  the packets may become aggregated unintentionally and cause local
 
  congestion.  There are several approaches to addressing this problem,
 
  such as metering the traffic in each stream as it passes through each
 
  agent.  Experimentation is necessary before such a mechanism is
 
  selected.
 
 
 
  The interface between the agent and the network is very limited.  A
 
  mechanism is provided by which the ST layer can query the network to
 
  determine the likelihood that a stream can be supported.  However,
 
  this facility will require practical experience before its
 
  appropriate use is defined.
 
 
 
  The simplex tree model of a stream does not easily allow for using
 
  multiple paths to support a greater bandwidth.  That is, at any given
 
  point in a stream, the entire incoming bandwidth must be transmitted
 
  to the same next-hop in order to get to some target.  If the
 
  bandwidth isn't available along any single path, the stream cannot be
 
  built to that target.  It may be the case that the bandwidth is not
 
  available along a single path, but if the data
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  flow is split along multiple paths, and so multiple next-hops,
 
  sufficient bandwidth would be available.  As currently specified, the
 
  ST agent at the point where the multiple flows converge will refuse
 
  the second connection because it can only be interpreted as a routing
 
  failure.  A mechanism that allows multiple paths in a stream and can
 
  protect against routing failures has not been defined.
 
 
 
  If sufficient bandwidth is not available, both preemption and
 
  rerouting are possible.  However, it is not clear when to use one or
 
  the other.  As currently specified, an ST agent that cannot obtain
 
  sufficient bandwidth will attempt to preempt lower precedence streams
 
  before attempting to reroute around the bottleneck.  This may lead to
 
  an undesirably high number of preemptions.  It may be that a higher
 
  precedence stream can be rerouted around lower precedence streams and
 
  still meet its performance requirements, whereas the preempted lower
 
  precedence streams cannot be reconstructed and still meet their
 
  performance requirements.  A simple and effective algorithm to allow
 
  a better decision has not been identified.
 
 
 
  In case a stream cannot be completed, ST does not report to the
 
  application the nature of the trouble in any great detail.
 
  Specifically, the application cannot determine where the bottleneck
 
  is, whether the problem is permanent or transitory, or the likely
 
  time before the trouble may be resolved.  The application can only
 
  attempt to build the stream at some later time hoping that the
 
  trouble has been resolved.  Schemes can be envisioned by which
 
  information is relayed back to the application.  However, only
 
  practical experience can evaluate the kind of trouble that is most
 
  likely encountered and the nature of information that would be most
 
  useful to the application.
 
 
 
  A mechanism is also not defined for cases where a stream cannot be
 
  completed not because of lack of resources but because of an
 
  unexpected failure that results in an ERROR-IN-REQUEST message.  An
 
  ERROR-IN-REQUEST message is returned in cases when an ST agent issues
 
  a malformed control message to a neighbor.  Such an occurrence is
 
  unexpected and may be caused by a bad or incomplete ST
 
  implementation.  In some cases a message, such as a NOTIFY should be
 
  sent to the origin.  Such a mechanism is not defined because it is
 
  not clear what information can be extracted and what the origin
 
  should do.
 
 
 
  No special action is taken when a target is removed from a stream.
 
  Removing a target may also remove a bottleneck either in bandwidth,
 
  packet rate or packet size, but advantage of this opportunity is not
 
  taken automatically.  The application may initiate a change to the
 
  stream's characteristics, but it is not in the best position to do
 
  this because the application may not know the nature of the
 
  bottleneck.  The ST layer may have the best information, but a
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  mechanism to do this may be very complex.  As a result, this concept
 
  requires further thought.
 
 
 
  An agent simply discards a stream's data packets if it cannot forward
 
  them.  The reason may be that the packets are too large or are
 
  arriving at too high a rate.  Alternative actions may include an
 
  attempt to do something with the packets, such as fragmenting them,
 
  or to notify the origin of the trouble.  Corrective measures may be
 
  too complex, so it may be preferable simply to notify the origin with
 
  a NOTIFY message.  However, if the incoming packet rate is causing
 
  congestion, then the NOTIFY messages themselves may cause more
 
  trouble.  The nature of the communication has yet to be defined.
 
 
 
  The FlowSpec includes a cost field, but its implementation has not
 
  been identified.  The units of cost can probably be defined
 
  relatively easily.  Cost of bandwidth can probably also be assigned.
 
  It is not clear how cost is assigned to other functions, such as high
 
  precedence or low delay, or how cost of the components of the stream
 
  are combined together.  It is clear that the cost to provide services
 
  will become more important in the near future, but it is not clear at
 
  this time how that cost is determined.
 
 
 
  A number of parameters of the FlowSpec are intended to be used as
 
  ranges, but some may be useful as discrete values.  For example, the
 
  FlowSpec may specify that bandwidth for a stream carrying voice
 
  should be reserved in a range from 16Kbps to 64Kbps because the voice
 
  codec has a variable coding rate.  However, the voice codec may be
 
  varied only among certain discrete values, such as 16Kbps, 32Kbps and
 
  64Kbps.  A stream that has 48Kbps of bandwidth is no better than one
 
  with 32Kbps.  The parameters of the FlowSpec where this may be
 
  relevant should optionally specify discrete values.  This is being
 
  considered.
 
 
 
  Groups are defined as a way to associate different streams, but the
 
  nature of the association is left for further study.  An example of
 
  such an association is to allow streams whose traffic is inherently
 
  not simultaneous to share the same allocated resources.  This may
 
  happen for example in a conference that has an explicit floor, such
 
  that only one site can generate video or audio traffic at any given
 
  time.  The grouping facility can be implemented based on this
 
  specification, but the implementation of the possible uses of groups
 
  will require new functionality to be added to the ST agents.  The
 
  uses for groups and the implementation to support them will be
 
  carried out as experience is gained and the need arises.
 
 
 
  We hope that the ST we here propose will act as a vehicle to study
 
  the use and performance of stream oriented services across packet
 
  switched networks.
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  [This page intentionally left blank.]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
6.      Glossary
 
 
 
  appropriate reason code
 
      This phrase refers to one or perhaps a set of reason codes that
 
      indicate why a particular action is being taken.  Typically,
 
      these result from detection of errors or anomalous conditions.
 
      It can also indicate that an application component or agent has
 
      presented invalid parameters.
 
 
 
  DefaultRecoveryTimeout
 
      The DefaultRecoveryTimeout is maintained by each ST agent.  It
 
      indicates the default time interval to use for sending HELLO
 
      messages.
 
 
 
  downstream
 
      The direction in a stream from an origin toward its targets.
 
 
 
  element
 
      The fields and parameters of the ST control messages are
 
      collectively called elements.
 
 
 
  FlowSpec
 
      The Flow Specification, abbreviated "FlowSpec" is used by an
 
      application to specify required and desired characteristics of
 
      the stream.  The FlowSpec specifies bandwidth, delay, and
 
      reliability parameters.  Both minimal requirements and desired
 
      characteristics are included.  This information is then used to
 
      guide route selection and resource allocation decisions.  The
 
      desired vs. required characteristics are used to guide tradeoff
 
      decisions among competing stream requests.
 
 
 
  group
 
      A set of related streams can be associated as a group.  This is
 
      done by generating a Group Name and assigning it to each of the
 
      related streams.  The grouping information can then be used by
 
      the ST agents in making resource management and other control
 
      decisions.  For example, when preemption is necessary to
 
      establish a high precedence stream, we can exploit the group
 
      information to minimize the number of stream groups that are
 
      preempted.
 
 
 
  Group Name
 
      The Group Name is used to indicate that a collection of streams
 
      are related.  A Group Name is structured to ensure that it is
 
      unique across all hosts:  it includes the address of the host
 
      where it was generated combined with a unique number generated
 
      by that host.  A timestamp is added to ensure that the overall
 
      name is unique over all time.  (A Group Name has the same format
 
      as a stream Name.)
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  HelloLossFactor
 
      The HelloLossFactor is a parameter maintained by each ST agent.
 
      It identifies the expected number of consecutive HELLO messages
 
      typically lost due to transient factors.  Thus, an agent will be
 
      assumed to be down after we miss more than HelloLossFactor
 
      messages.
 
 
 
  HelloTimer
 
      The HelloTimer is a millisecond timer maintained by each ST
 
      agent.  It is included in each HELLO message.  It represents the
 
      time since the agent was restarted, modulo the precision of the
 
      field.  It is used to detect variations in the delay between the
 
      two agents, by comparing the arrival interval of two HELLO
 
      messages to the difference between their HelloTimer fields.
 
 
 
  HelloTimerHoldDown
 
      The HelloTimerHoldDown value is maintained by each ST agent.
 
      When an ST agent is restarted, it will set the "Restarted" bit
 
      in all HELLO messages it sends for HelloTimerHoldDown seconds.
 
 
 
  HID
 
      The Hop IDentifier, abbreviated as HID, is a numeric key stored
 
      in the header of each ST packet.  It is used by an ST agent to
 
      associate the packet with one of the incoming hops managed by
 
      the agent.  It can be used by receiving agent to map to
 
      the set of outgoing next-hops to which the message should be
 
      forwarded.  The HID field of an ST packet will generally need to
 
      be changed as it passes through each ST agent since there may be
 
      many HIDs associated with a single stream.
 
 
 
  hop
 
      A "hop" refers to the portion of a stream's path between two
 
      neighbor ST agents.  It is usually represented by a physical
 
      network.  However, a multicast hop can connect a single ST agent
 
      to several next-hop ST agents.
 
 
 
  host agents
 
      Synonym for host ST agents.
 
 
 
  host ST agents
 
      Host ST agents are ST agents that provide services to higher
 
      layer protocols and applications.  The services include methods
 
      for sourcing data from and sinking data to the higher layer or
 
      application, and methods for requesting and modifying streams.
 
 
 
  intermediate agents
 
      Synonym for intermediate ST agents.
 
 
 
  intermediate ST agents
 
      Intermediate ST agents are ST agents that can forward ST
 
      packets between the networks to which they are attached.
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  MTU
 
      The abbreviation for Maximum Transmission Unit, which is the
 
      maximum packet size in bytes that can be accepted by a given
 
      network for transmission.  ST agents determine the maximum
 
      packet size for a stream so that data written to the stream can
 
      be forwarded through the networks without fragmentation.
 
 
 
  multi-destination simplex
 
      The topology and data flow of ST streams are described as being
 
      multi-destination simplex:  all data flowing on the stream
 
      originates from a single origin and is passed to one or more
 
      destination targets.  Only control information, invisible to the
 
      application program, ever passes in the upstream direction.
 
 
 
  NAccept
 
      NAccept is an integer parameter maintained by each ST agent.  It
 
      is used to control retransmission of an ACCEPT message.  Since
 
      an ACCEPT request is relayed by agents back toward the origin,
 
      it must be acknowledged by each previous-hop agent.  If this ACK
 
      is not received within the appropriate timeout interval, the
 
      request will be resent up to NAccept times before giving up.
 
 
 
  Name
 
      Generally refers to the name of a stream.  A stream Name is
 
      structured to ensure that it is unique across all hosts: it
 
      includes the address of the host where it was generated combined
 
      with a unique number generated at that host.  A timestamp is
 
      added to ensure that the overall Name is unique over all time.
 
      (A stream Name has the same format as a Group Name.)
 
 
 
  NConnect
 
      NConnect is an integer parameter maintained by each ST agent.
 
      It is used to control retransmission of a CONNECT message.  A
 
      CONNECT request must be acknowledged by each next-hop agent as
 
      it is propagated toward the targets.  If a HID-ACCEPT,
 
      HID-REJECT, or ACK is not received for the CONNECT between any
 
      two agents within the appropriate timeout interval, the request
 
      will be resent up to NConnect times before giving up.
 
 
 
  NDisconnect
 
      NDisconnect is an integer parameter maintained by each ST
 
      agent.  It is used to control retransmission of a DISCONNECT
 
      message.  A DISCONNECT request must be acknowledged by each
 
      next-hop agent as it is propagated toward the targets.  If this
 
      ACK is not received for the DISCONNECT between any two agents
 
      within the appropriate timeout interval, the request will be
 
      resent up to NDisconnect times before giving up.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  next protocol identifier
 
      The next protocol identifier is used by a target ST agent to
 
      identify to which of several higher layer protocols it should
 
      pass data packets it receives the network.  Examples of higher
 
      layer protocols include the Network Voice Protocol and the
 
      Packet Video Protocol.  These higher layer protocols will
 
      typically perform further demultiplexing among multiple
 
      application processes as part of their protocol processing
 
      activities.
 
 
 
  next-hop
 
      Synonym for next-hop ST agent.
 
 
 
  next-hop ST agent
 
      For each origin or intermediate ST agent managing a stream
 
      there are a set of next-hop ST agents.  The intermediate agent
 
      forwards each data packet it receives to all the next-hop ST
 
      agents, which in turn forward the data toward the target host
 
      agent (if the particular next-hop agent is another intermediate
 
      agent) or to the next higher protocol layer at the target (if
 
      the particular next-hop agent is a host agent).
 
 
 
  NextPcol
 
      NextPcol is a field in each Target of the CONNECT message used
 
      to convey the next protocol identifier.  See definition of next
 
      protocol identifier above for more details.
 
 
 
  NHIDAbort
 
      NHIDAbort is an integer parameter maintained by each ST agent.
 
      It is the number of unacceptable HID proposals before an ST
 
      agent aborts the HID negotiation process.
 
 
 
  NHIDAck
 
      NHIDAck is an integer parameter maintained by each ST agent.
 
      It is used to control retransmission of HID-CHANGE-REQUEST
 
      messages.  HID-CHANGE-REQUEST is sent by an ST agent to the
 
      previous-hop ST agent to request that the HID in use between
 
      those agents be changed.  The previous-hop acknowledges the
 
      HID-CHANGE-REQUEST message by sending a HID-CHANGE message.  If
 
      the HID-CHANGE is not received within the appropriate timeout
 
      interval, the request will be resent up to NHIDAck times before
 
      giving up.
 
 
 
  NHIDChange
 
      NHIDChange is an integer parameter maintained by each ST agent.
 
      It is used to control retransmission of the HID-CHANGE message.
 
      A HID-CHANGE message must be acknowledged by the next-hop agent.
 
      If this ACK is not received within the appropriate timeout
 
      interval, the request will be resent up to NHIDChange times
 
      before giving up.
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  NRefuse
 
      NRefuse is an integer parameter maintained by each ST agent.
 
      It is used to control retransmission of a REFUSE message.  As a
 
      REFUSE request is relayed by agents back toward the origin, it
 
      must be acknowledged by each previous-hop agent.  If this ACK is
 
      not received within the appropriate timeout interval, the
 
      request will be resent up to NRefuse times before giving up.
 
 
 
  NRetryRoute
 
      NRetryRoute is an integer parameter maintained by each ST
 
      agent.  It is used to control route exploration.  When an agent
 
      receives a REFUSE message whose ReasonCode indicates that the
 
      originally selected route is not acceptable, the agent should
 
      attempt to find an alternate route to the target.  If the agent
 
      has not found a viable route after a maximum of NRetryRoute
 
      choices, it should give up and notify the previous-hop or
 
      application that it cannot find an acceptable path to the
 
      target.
 
 
 
  origin
 
      The origin of a stream is the host agent where an application
 
      or higher level protocol originally requested that the stream be
 
      created.  The origin specifies the data to be sent through the
 
      stream.
 
 
 
  parameter
 
      Parameters are additional values that may be included in
 
      control messages.  Parameters are often optional.  They are
 
      distinguished from fields, which are always present.
 
 
 
  participants
 
      Participants are the end-users of a stream.
 
 
 
  PDU
 
      Abbreviation for Protocol Data Unit, defined below.
 
 
 
  peer
 
      The term peer is used to refer to entities at the same protocol
 
      layer.  It is used here to identify instances of an application
 
      or protocol layer above ST.  For example, data is passed through
 
      a stream from an originating peer process to its target peers.
 
 
 
  previous-hop
 
      Synonym for previous-hop ST agent.
 
 
 
  previous-hop ST agent
 
      The origin or intermediate agent from which an ST agent receives
 
      its data.
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  protocol data unit
 
      A protocol data unit (PDU) is the unit of data passed to a
 
      protocol layer by the next higher layer protocol or user.  It
 
      consists of control information and possibly user data.
 
 
 
  RecoveryTimeout
 
      RecoveryTimeout is specified in the FlowSpec of each stream.
 
      The minimum of these values over all streams between a pair of
 
      adjacent agents determines how often those agents must send
 
      HELLO messages to each other in order to ensure that failure of
 
      one of the agents will be detected quickly enough to meet the
 
      guarantee implied by the FlowSpec.
 
 
 
  Restarted bit
 
      The Restarted bit is part of the HELLO message.  When set, it
 
      indicates that the sending agent was restarted recently (within
 
      the last HelloTimerHoldDown seconds).
 
 
 
  round-trip time
 
      The round-trip-time is the time it takes a message to be sent,
 
      delivered, processed, and the acknowledgment received.  It
 
      includes both network and processing delays.
 
 
 
  RTT
 
      Abbreviation for round-trip-time.
 
 
 
  RVLId
 
      Abbreviation for Receiver's Virtual Link Identifier.  It
 
      uniquely identifies to the receiver the virtual link, and this
 
      stream, used to send it a message.  See definition for Virtual
 
      Link Identifier below.
 
 
 
  SAP
 
      Abbreviation for Service Access Point.
 
 
 
  SCMP
 
      Abbreviation for ST Control Message Protocol, defined below.
 
 
 
  Service Access Point
 
      A point where a protocol service provider makes available the
 
      services it offers to a next higher layer protocol or user.
 
 
 
  setup phase
 
      Before data can be transmitted through a stream, the ST agents
 
      must distribute state information about the stream to all agents
 
      along the path(s) to the target(s).  This is the setup phase.
 
      The setup phase ends when all the ACCEPT and REFUSE messages
 
      sent by the targets have been delivered to the origin.  At this
 
      point, the data transfer phase begins and data can be sent.
 
      Requests to modify the stream can be issued after the setup
 
      phase has ended, i.e., during the data transfer phase without
 
      disrupting the flow of data.
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  ST agent
 
      An ST agent is an entity that implements the ST Protocol.
 
 
 
  ST Control Message Protocol
 
      The ST Control Message Protocol is the subset of the overall ST
 
      Protocol responsible for creation, modification, maintenance,
 
      and tear down of a stream.  It also includes support for event
 
      notification and status monitoring.
 
 
 
  stream
 
      A stream is the basic object managed by the ST Protocol for
 
      transmission of data.  A stream has one origin where data are
 
      generated and one or more targets where the data are received
 
      for processing.  A flow specification, provided by the origin
 
      and negotiated among the origin, intermediate, and target ST
 
      agents, identifies the requirements of the application and the
 
      guarantees that can be assured by the ST agents.
 
 
 
  subsets
 
      Subsets of the ST Protocol are permitted, as defined in various
 
      sections of this specification.  Subsets are defined to allow
 
      simplified implementations that can still effectively
 
      interoperate with more complete implementations without causing
 
      disruption.
 
 
 
  SVLId
 
      Abbreviation for Sender's Virtual Link Identifier.  It uniquely
 
      identifies to the receiver the virtual link identifier that
 
      should be placed into the RVLId field of all replies sent over
 
      the virtual link for a given stream.  See definition for Virtual
 
      Link Identifier below.
 
 
 
  target
 
      An ST target is the destination where data supplied by the
 
      origin will be delivered for higher layer protocol or
 
      application processing.
 
 
 
  tear down
 
      The tear down phase of a stream begins when the origin indicates
 
      that it has no further data to send and the ST agents through
 
      which the stream passes should dismantle the stream and release
 
      its resources.
 
 
 
  ToAccept
 
      ToAccept is a timeout in seconds maintained by each ST agent.
 
      It sets the retransmission interval for ACCEPT messages.
 
 
 
  ToConnect
 
      ToConnect is a timeout in seconds maintained by each ST agent.
 
      It sets the retransmission interval a CONNECT messages.
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  ToDisconnect
 
      ToDisconnect is a timeout in seconds maintained by each ST
 
      agent.  It sets the retransmission interval for DISCONNECT
 
      messages.
 
 
 
  ToHIDAck
 
      ToHIDAck is a timeout in seconds maintained by each ST agent.
 
      It sets the retransmission interval for HID-CHANGE-REQUEST
 
      messages.
 
 
 
  ToHIDChange
 
      ToHIDChange is a timeout in seconds maintained by each ST agent.
 
      It sets the retransmission interval for HID-CHANGE messages.
 
 
 
  ToRefuse
 
      ToRefuse is a timeout in seconds maintained by each ST agent.
 
      It sets the retransmission interval for REFUSE messages.
 
 
 
  upstream
 
      The direction in a stream from a target toward the origin.
 
 
 
  Virtual Link
 
      A virtual link is one edge of the tree describing the path of
 
      data flow through a stream.  A separate virtual link is assigned
 
      to each pair of neighbor ST agents, even when multiple next-hops
 
      are be reached through a single network level multicast group.
 
      The virtual link allows efficient demultiplexing of ST Control
 
      Message PDUs received from a single physical link or network.
 
 
 
  Virtual Link Identifier
 
      For each ST Control Message sent, the sender provides its own
 
      virtual link identifier and that of the receiver (if known).
 
      Either of these identifiers, combined with the address of the
 
      corresponding host, can be used to identify uniquely the virtual
 
      control link to the agent.  However, virtual link identifiers
 
      are chosen by the associated agent so that the agent may
 
      precisely identify the stream, state machine, and other protocol
 
      processing data elements managed by that agent, without regard
 
      to the source of the control message.  Virtual link identifiers
 
      are not negotiated, and do not change during the lifetime of a
 
      stream.  They are discarded when the stream is torn down.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
7.      References
 
 
 
  [1] Braden, B., Borman, D., and C. Partridge, "Computing the
 
      Internet Checksum", RFC 1071, USC/Information Sciences
 
      Institute, Cray Research, BBN Laboratories, September
 
      1988.
 
 
 
 
 
  [2] Braden, R. (ed.), "Requirements for Internet Hosts --
 
      Communication Layers", RFC 1122, USC/Information Sciences
 
      Institute, October 1989.
 
 
 
 
 
  [3] Cheriton, D., "VMTP: Versatile Message Transaction Protocol
 
      Specification", RFC 1045, Stanford University, February 1988.
 
 
 
 
 
  [4] Cohen, D., "A Network Voice Protocol NVP-II", USC/Information
 
      Sciences Institute, April 1981.
 
 
 
 
 
  [5] Cole, E., "PVP - A Packet Video Protocol", W-Note 28,
 
      USC/Information Sciences Institute, August 1981.
 
 
 
 
 
  [6] Deering, S., "Host Extensions for IP Multicasting", RFC 1112,
 
      Stanford University, August 1989.
 
 
 
 
 
  [7] Edmond W., Seo K., Leib M., and C. Topolcic, "The DARPA
 
      Wideband Network Dual Bus Protocol", accepted for presentation
 
      at ACM SIGCOMM '90, September 24-27, 1990.
 
 
 
 
 
  [8] Forgie, J., "ST - A Proposed Internet Stream Protocol",
 
      IEN 119, M. I. T. Lincoln Laboratory, 7 September 1979.
 
 
 
 
 
  [9] Jacobs I., Binder R., and E. Hoversten E., "General Purpose
 
      Packet Satellite Network", Proc. IEEE, vol 66, pp 1448-1467,
 
      November 1978.
 
 
 
 
 
  [10] Jacobson, V., "Congestion Avoidance and Control", ACM
 
        SIGCOMM-88, August 1988.
 
 
 
 
 
  [11] Karn, P. and C. Partridge, "Round Trip Time Estimation",
 
        ACM SIGCOMM-87, August 1987.
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  [12] Mallory, T., and A. Kullberg, "Incremental Updating of the
 
        Internet Checksum", RFC 1141, BBN Communications
 
        Corporation, January 1990.
 
 
 
 
 
  [13] Mills, D., "Network Time Protocol (Version 2) Specification
 
        and Implementation", RFC 1119, University of Delaware,
 
        September 1989 (Revised February 1990).
 
 
 
 
 
  [14] Pope, A., "The SIMNET Network and Protocols", BBN
 
        Report No. 7102, BBN Systems and Technologies, July 1989.
 
 
 
 
 
  [15] Postel, J., ed., "Internet Protocol - DARPA Internet Program
 
        Protocol Specification", RFC 791, DARPA, September 1981.
 
 
 
 
 
  [16] Postel, J., ed., "Transmission Control Protocol - DARPA
 
        Internet Program Protocol Specification", RFC 793, DARPA,
 
        September 1981.
 
 
 
 
 
  [17] Postel, J., "User Datagram Protocol", RFC 768,
 
        USC/Information Sciences Institute, August 1980.
 
 
 
 
 
  [18] Reynolds, J., Postel, J., "Assigned Numbers", RFC 1060,
 
        USC/Information Sciences Institute, March 1990.
 
 
 
 
 
  [19] SDNS Protocol and Signaling Working Group, SP3 Sub-Group,
 
        SDNS Secure Data Network System, Security Protocol 3 (SP3),
 
        SDN.301, Rev. 1.5, 1989-05-15.
 
 
 
 
 
  [20] SDNS Protocol and Signaling Working Group, SP3 Sub-Group,
 
        SDNS Secure Data Network System, Security Protocol 3 (SP3)
 
        Addendum 1, Cooperating Families, SDN.301.1, Rev. 1.2,
 
        1988-07-12.
 
 
 
8.      Security Considerations
 
 
 
  See section 3.7.8.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
9.      Authors' Addresses
 
 
 
      Stephen Casner
 
      USC/Information Sciences Institute
 
      4676 Admiralty Way
 
      Marina del Rey, CA 90292-6695
 
 
 
      Phone: (213) 822-1511 x153
 
      EMail: [email protected]
 
 
 
 
 
      Charles Lynn, Jr.
 
      BBN Systems and Technologies,
 
      a division of Bolt Beranek and Newman Inc.
 
      10 Moulton Street
 
      Cambridge, MA  02138
 
 
 
      Phone: (617) 873-3367
 
      EMail: [email protected]
 
 
 
 
 
      Philippe Park
 
      BBN Systems and Technologies,
 
      a division of Bolt Beranek and Newman Inc.
 
      10 Moulton Street
 
      Cambridge, MA  02138
 
 
 
      Phone: (617) 873-2892
 
      EMail: [email protected]
 
 
 
 
 
      Kenneth Schroder
 
      BBN Systems and Technologies,
 
      a division of Bolt Beranek and Newman Inc.
 
      10 Moulton Street
 
      Cambridge, MA  02138
 
 
 
      Phone: (617) 873-3167
 
      EMail: [email protected]
 
 
 
 
 
      Claudio Topolcic
 
      BBN Systems and Technologies,
 
      a division of Bolt Beranek and Newman Inc.
 
      10 Moulton Street
 
      Cambridge, MA  02138
 
 
 
      Phone: (617) 873-3874
 
      EMail: [email protected]
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
                  [This page intentionally left blank.]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
Appendix 1.      Data Notations
 
 
 
  The convention in the documentation of Internet Protocols is to
 
  express numbers in decimal and to picture data with the most
 
  significant octet on the left and the least significant octet on the
 
  right.
 
 
 
  The order of transmission of the header and data described in this
 
  document is resolved to the octet level.  Whenever a diagram shows a
 
  group of octets, the order of transmission of those octets is the
 
  normal order in which they are read in English.  For example, in the
 
  following diagram the octets are transmitted in the order they are
 
  numbered.
 
 
 
 
 
    0                  1                  2                  3
 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |      1      |      2      |      3      |      4      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |      5      |      6      |      7      |      8      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
  |      9      |      10      |      11      |      12      |
 
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
 
 
                Figure 56.  Transmission Order of Bytes
 
 
 
 
 
  Whenever an octet represents a numeric quantity the left most bit in
 
  the diagram is the high order or most significant bit.  That is, the
 
  bit labeled 0 is the most significant bit.  For example, the
 
  following diagram represents the value 170 (decimal).
 
 
 
 
 
                            0 1 2 3 4 5 6 7
 
                          +-+-+-+-+-+-+-+-+
 
                          |1 0 1 0 1 0 1 0|
 
                          +-+-+-+-+-+-+-+-+
 
 
 
                    Figure 57.  Significance of Bits
 
 
 
 
 
  Similarly, whenever a multi-octet field represents a numeric quantity
 
  the left most bit of the whole field is the most significant bit.
 
  When a multi-octet quantity is transmitted the most significant octet
 
  is transmitted first.
 
 
 
  Fields whose length is fixed and fully illustrated are shown with a
 
  vertical bar (|) at the end;  fixed fields whose contents are
 
  abbreviated are shown with an exclamation point (!);  variable fields
 
  are shown with colons (:).
 
 
 
 
 
 
 
CIP Working Group                                           
 
 
 
RFC 1190                Internet Stream Protocol            October 1990
 
 
 
 
 
  Optional parameters are separated from control messages with a blank
 
  line.  The order of any optional parameters is not meaningful.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 +
[3] Cheriton, D., "VMTP: Versatile Message Transaction Protocol
 +
    Specification", RFC 1045, Stanford University, February 1988.
  
 +
[4] Cohen, D., "A Network Voice Protocol NVP-II", USC/Information
 +
    Sciences Institute, April 1981.
  
 +
[5] Cole, E., "PVP - A Packet Video Protocol", W-Note 28,
 +
    USC/Information Sciences Institute, August 1981.
  
 +
[6] Deering, S., "Host Extensions for IP Multicasting", RFC 1112,
 +
    Stanford University, August 1989.
  
 +
[7] Edmond W., Seo K., Leib M., and C. Topolcic, "The DARPA
 +
    Wideband Network Dual Bus Protocol", accepted for presentation
 +
    at ACM SIGCOMM '90, September 24-27, 1990.
  
 +
[8] Forgie, J., "ST - A Proposed Internet Stream Protocol",
 +
    IEN 119, M. I. T. Lincoln Laboratory, 7 September 1979.
  
 +
[9] Jacobs I., Binder R., and E. Hoversten E., "General Purpose
 +
    Packet Satellite Network", Proc. IEEE, vol 66, pp 1448-1467,
 +
    November 1978.
  
 +
[10] Jacobson, V., "Congestion Avoidance and Control", ACM
 +
    SIGCOMM-88, August 1988.
  
 +
[11] Karn, P. and C. Partridge, "Round Trip Time Estimation",
 +
    ACM SIGCOMM-87, August 1987.
  
 +
[12] Mallory, T., and A. Kullberg, "Incremental Updating of the
 +
    Internet Checksum", RFC 1141, BBN Communications
 +
    Corporation, January 1990.
  
 +
[13] Mills, D., "Network Time Protocol (Version 2) Specification
 +
    and Implementation", RFC 1119, University of Delaware,
 +
    September 1989 (Revised February 1990).
  
 +
[14] Pope, A., "The SIMNET Network and Protocols", BBN
 +
    Report No. 7102, BBN Systems and Technologies, July 1989.
  
 +
[15] Postel, J., ed., "Internet Protocol - DARPA Internet Program
 +
    Protocol Specification", RFC 791, DARPA, September 1981.
  
 +
[16] Postel, J., ed., "Transmission Control Protocol - DARPA
 +
    Internet Program Protocol Specification", RFC 793, DARPA,
 +
    September 1981.
  
 +
[17] Postel, J., "User Datagram Protocol", RFC 768,
 +
    USC/Information Sciences Institute, August 1980.
  
 +
[18] Reynolds, J., Postel, J., "Assigned Numbers", RFC 1060,
 +
    USC/Information Sciences Institute, March 1990.
  
 +
[19] SDNS Protocol and Signaling Working Group, SP3 Sub-Group,
 +
    SDNS Secure Data Network System, Security Protocol 3 (SP3),
 +
    SDN.301, Rev. 1.5, 1989-05-15.
  
 +
[20] SDNS Protocol and Signaling Working Group, SP3 Sub-Group,
 +
    SDNS Secure Data Network System, Security Protocol 3 (SP3)
 +
    Addendum 1, Cooperating Families, SDN.301.1, Rev. 1.2,
 +
    1988-07-12.
  
 +
== Security Considerations ==
  
 +
See section 3.7.8.
  
 +
== Authors' Addresses ==
  
 +
  Stephen Casner
 +
  USC/Information Sciences Institute
 +
  4676 Admiralty Way
 +
  Marina del Rey, CA 90292-6695
  
 +
  Phone: (213) 822-1511 x153
 +
  
 +
  Charles Lynn, Jr.
 +
  BBN Systems and Technologies,
 +
  a division of Bolt Beranek and Newman Inc.
 +
  10 Moulton Street
 +
  Cambridge, MA  02138
  
 +
  Phone: (617) 873-3367
 +
  
 +
  Philippe Park
 +
  BBN Systems and Technologies,
 +
  a division of Bolt Beranek and Newman Inc.
 +
  10 Moulton Street
 +
  Cambridge, MA  02138
  
 +
  Phone: (617) 873-2892
 +
  
 +
  Kenneth Schroder
 +
  BBN Systems and Technologies,
 +
  a division of Bolt Beranek and Newman Inc.
 +
  10 Moulton Street
 +
  Cambridge, MA  02138
  
 +
  Phone: (617) 873-3167
 +
  
 +
  Claudio Topolcic
 +
  BBN Systems and Technologies,
 +
  a division of Bolt Beranek and Newman Inc.
 +
  10 Moulton Street
 +
  Cambridge, MA  02138
  
 +
  Phone: (617) 873-3874
 +
  
 +
                [This page intentionally left blank.]
  
 +
Appendix 1.      Data Notations
  
 +
The convention in the documentation of Internet Protocols is to
 +
express numbers in decimal and to picture data with the most
 +
significant octet on the left and the least significant octet on the
 +
right.
  
 +
The order of transmission of the header and data described in this
 +
document is resolved to the octet level.  Whenever a diagram shows a
 +
group of octets, the order of transmission of those octets is the
 +
normal order in which they are read in English.  For example, in the
 +
following diagram the octets are transmitted in the order they are
 +
numbered.
  
 +
0                  1                  2                  3
 +
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|      1      |      2      |      3      |      4      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|      5      |      6      |      7      |      8      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +
|      9      |      10      |      11      |      12      |
 +
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  
 +
            Figure 56.  Transmission Order of Bytes
  
 +
Whenever an octet represents a numeric quantity the left most bit in
 +
the diagram is the high order or most significant bit.  That is, the
 +
bit labeled 0 is the most significant bit.  For example, the
 +
following diagram represents the value 170 (decimal).
  
 +
                        0 1 2 3 4 5 6 7
 +
                        +-+-+-+-+-+-+-+-+
 +
                        |1 0 1 0 1 0 1 0|
 +
                        +-+-+-+-+-+-+-+-+
  
 +
                Figure 57.  Significance of Bits
  
 +
Similarly, whenever a multi-octet field represents a numeric quantity
 +
the left most bit of the whole field is the most significant bit.
 +
When a multi-octet quantity is transmitted the most significant octet
 +
is transmitted first.
  
 +
Fields whose length is fixed and fully illustrated are shown with a
 +
vertical bar (|) at the end;  fixed fields whose contents are
 +
abbreviated are shown with an exclamation point (!);  variable fields
 +
are shown with colons (:).
  
CIP Working Group
+
Optional parameters are separated from control messages with a blank
 +
line.  The order of any optional parameters is not meaningful.

Revision as of 21:24, 29 September 2020

Network Working Group CIP Working Group Request for Comments: 1190 C. Topolcic, Editor Obsoletes: IEN-119 October 1990

    Experimental Internet Stream Protocol, Version 2 (ST-II)

Status of this Memo

This memo defines a revised version of the Internet Stream Protocol, originally defined in IEN-119 [8], based on results from experiments with the original version, and subsequent requests, discussion, and suggestions for improvements. This is a Limited-Use Experimental Protocol. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Contents

Abstract

This memo defines the Internet Stream Protocol, Version 2 (ST-II), an IP-layer protocol that provides end-to-end guaranteed service across an internet. This specification obsoletes IEN 119 "ST - A Proposed Internet Stream Protocol" written by Jim Forgie in 1979, the previous specification of ST. ST-II is not compatible with Version 1 of the protocol, but maintains much of the architecture and philosophy of that version. It is intended to fill in some of the areas left unaddressed, to make it easier to implement, and to support a wider range of applications.

1.1. Table of Contents

             Status of this Memo .  .  .  .  .  .  .  .  .  .  .  .   1
     1.      Abstract   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   1
     1.1.       Table of Contents   .  .  .  .  .  .  .  .  .  .  .   2
     1.2.       List of Figures  .  .  .  .  .  .  .  .  .  .  .  .   4
     2.      Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .   7
     2.1.       Major Differences Between ST and ST-II   .  .  .  .   8
     2.2.       Concepts and Terminology  .  .  .  .  .  .  .  .  .   9
     2.3.       Relationship Between Applications and ST .  .  .  .  11
     2.4.       ST Control Message Protocol  .  .  .  .  .  .  .  .  12
     2.5.       Flow Specifications .  .  .  .  .  .  .  .  .  .  .  14
     3.      ST Control Message Protocol Functional Description   .  17
     3.1.       Stream Setup  .  .  .  .  .  .  .  .  .  .  .  .  .  18
     3.1.1.        Initial Setup at the Origin  .  .  .  .  .  .  .  18
     3.1.2.        Invoking the Routing Function   .  .  .  .  .  .  19
     3.1.3.        Reserving Resources .  .  .  .  .  .  .  .  .  .  19
     3.1.4.        Sending CONNECT Messages  .  .  .  .  .  .  .  .  20
     3.1.5.        CONNECT Processing by an Intermediate Agent .  .  22
     3.1.6.        Setup at the Targets   .  .  .  .  .  .  .  .  .  23
     3.1.7.        ACCEPT Processing by an Intermediate Agent  .  .  24
     3.1.8.        ACCEPT Processing by the Origin .  .  .  .  .  .  26
     3.1.9.        Processing a REFUSE Message  .  .  .  .  .  .  .  27
     3.2.       Data Transfer .  .  .  .  .  .  .  .  .  .  .  .  .  30
     3.3.       Modifying an Existing Stream .  .  .  .  .  .  .  .  31
     3.3.1.        Adding a Target  .  .  .  .  .  .  .  .  .  .  .  31
     3.3.2.        The Origin Removing a Target .  .  .  .  .  .  .  33
     3.3.3.        A Target Deleting Itself  .  .  .  .  .  .  .  .  35
     3.3.4.        Changing the FlowSpec  .  .  .  .  .  .  .  .  .  36
     3.4.       Stream Tear Down .  .  .  .  .  .  .  .  .  .  .  .  36
     3.5.       Exceptional Cases   .  .  .  .  .  .  .  .  .  .  .  37
     3.5.1.        Setup Failure due to CONNECT Timeout  .  .  .  .  37
     3.5.2.        Problems due to Routing Inconsistency .  .  .  .  38
     3.5.3.        Setup Failure due to a Routing Failure   .  .  .  39
     3.5.4.        Problems in Reserving Resources .  .  .  .  .  .  41
     3.5.5.        Setup Failure due to ACCEPT Timeout   .  .  .  .  41
     3.5.6.        Problems Caused by CHANGE Messages .  .  .  .  .  42
     3.5.7.        Notification of Changes Forced by Failures  .  .  42
     3.6.       Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  44
     3.6.1.        HID Field Option .  .  .  .  .  .  .  .  .  .  .  44
     3.6.2.        PTP Option .  .  .  .  .  .  .  .  .  .  .  .  .  44
     3.6.3.        FDx Option .  .  .  .  .  .  .  .  .  .  .  .  .  45
     3.6.4.        NoRecovery Option   .  .  .  .  .  .  .  .  .  .  46
     3.6.5.        RevChrg Option   .  .  .  .  .  .  .  .  .  .  .  46
     3.6.6.        Source Route Option .  .  .  .  .  .  .  .  .  .  46
     3.7.       Ancillary Functions .  .  .  .  .  .  .  .  .  .  .  48
     3.7.1.        Failure Detection   .  .  .  .  .  .  .  .  .  .  48
     3.7.1.1.         Network Failures .  .  .  .  .  .  .  .  .  .  48
     3.7.1.2.         Detecting ST Stream Failures .  .  .  .  .  .  49
     3.7.1.3.         Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  51
     3.7.2.        Failure Recovery .  .  .  .  .  .  .  .  .  .  .  51
     3.7.2.1.         Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  55
     3.7.3.        A Group of Streams  .  .  .  .  .  .  .  .  .  .  56
     3.7.3.1.         Group Name Generator   .  .  .  .  .  .  .  .  57
     3.7.3.2.         Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  57
     3.7.4.        HID Negotiation  .  .  .  .  .  .  .  .  .  .  .  58
     3.7.4.1.         Subset  .  .  .  .  .  .  .  .  .  .  .  .  .  64
     3.7.5.        IP Encapsulation of ST .  .  .  .  .  .  .  .  .  64
     3.7.5.1.         IP Multicasting  .  .  .  .  .  .  .  .  .  .  65
     3.7.6.        Retransmission   .  .  .  .  .  .  .  .  .  .  .  66
     3.7.7.        Routing .  .  .  .  .  .  .  .  .  .  .  .  .  .  67
     3.7.8.        Security   .  .  .  .  .  .  .  .  .  .  .  .  .  67
     3.8.       ST Service Interfaces  .  .  .  .  .  .  .  .  .  .  68
     3.8.1.        Access to Routing Information   .  .  .  .  .  .  69
     3.8.2.        Access to Network Layer Resource Reservation   .  70
     3.8.3.        Network Layer Services Utilized .  .  .  .  .  .  71
     3.8.4.        IP Services Utilized   .  .  .  .  .  .  .  .  .  71
     3.8.5.        ST Layer Services Provided   .  .  .  .  .  .  .  72
     4.      ST Protocol Data Unit Descriptions .  .  .  .  .  .  .  75
     4.1.       Data Packets  .  .  .  .  .  .  .  .  .  .  .  .  .  76
     4.2.       ST Control Message Protocol Descriptions .  .  .  .  77
     4.2.1.        ST Control Messages .  .  .  .  .  .  .  .  .  .  79
     4.2.2.        Common SCMP Elements   .  .  .  .  .  .  .  .  .  80
     4.2.2.1.         DetectorIPAddress   .  .  .  .  .  .  .  .  .  80
     4.2.2.2.         ErroredPDU .  .  .  .  .  .  .  .  .  .  .  .  80
     4.2.2.3.         FlowSpec & RFlowSpec   .  .  .  .  .  .  .  .  81
     4.2.2.4.         FreeHIDs   .  .  .  .  .  .  .  .  .  .  .  .  84
     4.2.2.5.         Group & RGroup   .  .  .  .  .  .  .  .  .  .  85
     4.2.2.6.         HID & RHID .  .  .  .  .  .  .  .  .  .  .  .  86
     4.2.2.7.         MulticastAddress .  .  .  .  .  .  .  .  .  .  86
     4.2.2.8.         Name & RName  .  .  .  .  .  .  .  .  .  .  .  87
     4.2.2.9.         NextHopIPAddress .  .  .  .  .  .  .  .  .  .  88
     4.2.2.10.        Origin  .  .  .  .  .  .  .  .  .  .  .  .  .  88
     4.2.2.11.        OriginTimestamp  .  .  .  .  .  .  .  .  .  .  89
     4.2.2.12.        ReasonCode .  .  .  .  .  .  .  .  .  .  .  .  89
     4.2.2.13.        RecordRoute   .  .  .  .  .  .  .  .  .  .  .  94
     4.2.2.14.        SrcRoute   .  .  .  .  .  .  .  .  .  .  .  .  95
     4.2.2.15.        Target and TargetList  .  .  .  .  .  .  .  .  96
     4.2.2.16.        UserData   .  .  .  .  .  .  .  .  .  .  .  .  98
     4.2.3.        ST Control Message PDUs   .  .  .  .  .  .  .  .  99
     4.2.3.1.         ACCEPT  .  .  .  .  .  .  .  .  .  .  .  .  . 100
     4.2.3.2.         ACK  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
     4.2.3.3.         CHANGE-REQUEST   .  .  .  .  .  .  .  .  .  . 103
     4.2.3.4.         CHANGE  .  .  .  .  .  .  .  .  .  .  .  .  . 104
     4.2.3.5.         CONNECT .  .  .  .  .  .  .  .  .  .  .  .  . 105
     4.2.3.6.         DISCONNECT .  .  .  .  .  .  .  .  .  .  .  . 110
     4.2.3.7.         ERROR-IN-REQUEST .  .  .  .  .  .  .  .  .  . 111
     4.2.3.8.         ERROR-IN-RESPONSE   .  .  .  .  .  .  .  .  . 112
     4.2.3.9.         HELLO   .  .  .  .  .  .  .  .  .  .  .  .  . 113
     4.2.3.10.        HID-APPROVE   .  .  .  .  .  .  .  .  .  .  . 114
     4.2.3.11.        HID-CHANGE-REQUEST  .  .  .  .  .  .  .  .  . 115
     4.2.3.12.        HID-CHANGE .  .  .  .  .  .  .  .  .  .  .  . 116
     4.2.3.13.        HID-REJECT .  .  .  .  .  .  .  .  .  .  .  . 118
     4.2.3.14.        NOTIFY  .  .  .  .  .  .  .  .  .  .  .  .  . 120
     4.2.3.15.        REFUSE  .  .  .  .  .  .  .  .  .  .  .  .  . 122
     4.2.3.16.        STATUS  .  .  .  .  .  .  .  .  .  .  .  .  . 124
     4.2.3.17.        STATUS-RESPONSE  .  .  .  .  .  .  .  .  .  . 126
     4.3.       Suggested Protocol Constants .  .  .  .  .  .  .  . 127
     5.      Areas Not Addressed .  .  .  .  .  .  .  .  .  .  .  . 131
     6.      Glossary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135
     7.      References .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
     8.      Security Considerations.  .  .  .  .  .  .  .  .  .  . 144
     9.      Authors' Addresses  .  .  .  .  .  .  .  .  .  .  .  . 145
     Appendix 1.      Data Notations   .  .  .  .  .  .  .  .  .  . 147

1.2. List of Figures

     Figure 1.    Protocol Relationships  .  .  .  .  .  .  .  .  .   6
     Figure 2.    Topology Used in Protocol Exchange Diagrams  .  .  16
     Figure 3.    Virtual Link Identifiers for SCMP Messages   .  .  16
     Figure 4.    HIDs Assigned for ST User Packets   .  .  .  .  .  18
     Figure 5.    Origin Sending CONNECT Message   .  .  .  .  .  .  21
     Figure 6.    CONNECT Processing by an Intermediate Agent  .  .  22
     Figure 7.    CONNECT Processing by the Target .  .  .  .  .  .  24
     Figure 8.    ACCEPT Processing by an Intermediate Agent   .  .  25
     Figure 9.    ACCEPT Processing by the Origin  .  .  .  .  .  .  26
     Figure 10.   Sending REFUSE Message  .  .  .  .  .  .  .  .  .  28
     Figure 11.   Routing Around a Failure   .  .  .  .  .  .  .  .  29
     Figure 12.   Addition of Another Target .  .  .  .  .  .  .  .  32
     Figure 13.   Origin Removing a Target   .  .  .  .  .  .  .  .  34
     Figure 14.   Target Deleting Itself  .  .  .  .  .  .  .  .  .  35
     Figure 15.   CONNECT Retransmission after a Timeout .  .  .  .  38
     Figure 16.   Processing NOTIFY Messages .  .  .  .  .  .  .  .  43
     Figure 17.   Source Routing Option   .  .  .  .  .  .  .  .  .  47
     Figure 18.   Typical HID Negotiation (No Multicasting) .  .  .  60
     Figure 19.   Multicast HID Negotiation  .  .  .  .  .  .  .  .  61
     Figure 20.   Multicast HID Re-Negotiation           .  .  .  .  62
     Figure 21.   ST Header   .  .  .  .  .  .  .  .  .  .  .  .  .  75
     Figure 22.   ST Control Message Format  .  .  .  .  .  .  .  .  77
     Figure 23.   ErroredPDU  .  .  .  .  .  .  .  .  .  .  .  .  .  80
     Figure 24.   FlowSpec & RFlowSpec .  .  .  .  .  .  .  .  .  .  81
     Figure 25.   FreeHIDs .  .  .  .  .  .  .  .  .  .  .  .  .  .  85
     Figure 26.   Group & RGroup .  .  .  .  .  .  .  .  .  .  .  .  85
     Figure 27.   HID & RHID  .  .  .  .  .  .  .  .  .  .  .  .  .  86
     Figure 28.   MulticastAddress  .  .  .  .  .  .  .  .  .  .  .  86
     Figure 29.   Name & RName   .  .  .  .  .  .  .  .  .  .  .  .  87
     Figure 30.   NextHopIPAddress  .  .  .  .  .  .  .  .  .  .  .  88
     Figure 31.   Origin   .  .  .  .  .  .  .  .  .  .  .  .  .  .  88
     Figure 32.   OriginTimestamp   .  .  .  .  .  .  .  .  .  .  .  89
     Figure 33.   ReasonCode  .  .  .  .  .  .  .  .  .  .  .  .  .  89
     Figure 34.   RecordRoute .  .  .  .  .  .  .  .  .  .  .  .  .  94
     Figure 35.   SrcRoute .  .  .  .  .  .  .  .  .  .  .  .  .  .  95
     Figure 36.   Target   .  .  .  .  .  .  .  .  .  .  .  .  .  .  97
     Figure 37.   TargetList  .  .  .  .  .  .  .  .  .  .  .  .  .  97
     Figure 38.   UserData .  .  .  .  .  .  .  .  .  .  .  .  .  .  98
     Figure 39.   ACCEPT Control Message  .  .  .  .  .  .  .  .  . 101
     Figure 40.   ACK Control Message  .  .  .  .  .  .  .  .  .  . 102
     Figure 41.   CHANGE-REQUEST Control Message   .  .  .  .  .  . 103
     Figure 42.   CHANGE Control Message  .  .  .  .  .  .  .  .  . 105
     Figure 43.   CONNECT Control Message .  .  .  .  .  .  .  .  . 109
     Figure 44.   DISCONNECT Control Message .  .  .  .  .  .  .  . 110
     Figure 45.   ERROR-IN-REQUEST Control Message .  .  .  .  .  . 111
     Figure 46.   ERROR-IN-RESPONSE Control Message   .  .  .  .  . 112
     Figure 47.   HELLO Control Message   .  .  .  .  .  .  .  .  . 113
     Figure 48.   HID-APPROVE Control Message   .  .  .  .  .  .  . 114
     Figure 49.   HID-CHANGE-REQUEST Control Message  .  .  .  .  . 115
     Figure 50.   HID-CHANGE Control Message .  .  .  .  .  .  .  . 117
     Figure 51.   HID-REJECT Control Message .  .  .  .  .  .  .  . 119
     Figure 52.   NOTIFY Control Message  .  .  .  .  .  .  .  .  . 121
     Figure 53.   REFUSE Control Message  .  .  .  .  .  .  .  .  . 123
     Figure 54.   STATUS Control Message  .  .  .  .  .  .  .  .  . 125
     Figure 55.   STATUS-RESPONSE Control Message  .  .  .  .  .  . 126
     Figure 56.   Transmission Order of Bytes   .  .  .  .  .  .  . 147
     Figure 57.   Significance of Bits .  .  .  .  .  .  .  .  .  . 147
+--------------------+
| Conference Control |
+--------------------+
                |

+-------+ +-------+ | | Video | | Voice | | +-----+ +------+ +-----+ +-----+ Application | Appl | | Appl | | | SNMP| |Telnet| | FTP | ... | | Layer +-------+ +-------+ | +-----+ +------+ +-----+ +-----+

|        |      |     |        |     |            |
V        V      |     |        |     |            |   ------------
+-----+  +-----+   |     |        |     |            |
| PVP |  | NVP |   |     |        |     |            |
+-----+  +-----+   +     |        |     |            |
 |   \      | \     \    |        |     |            |
 |    +-----|--+-----+   |        |     |            |
 |     Appl.|control  V  V        V     V            V
 | ST  data |         +-----+    +-------+        +-----+
 | & control|         | UDP |    |  TCP  |    ... |     | Transport
 |          |         +-----+    +-------+        +-----+   Layer
 |         /|          / | \       / / |          / /|
 |\       / |  +------+--|--\-----+-/--|--- ... -+ / |
 | \     /  |  |         |   \     /   |          /  |
 |  \   /   |  |         |    \   +----|--- ... -+   |   -----------
 |   \ /    |  |         |     \ /     |             |
 |    V     |  |         |      V      |             |
 | +------+ |  |         |   +------+  |   +------+  |
 | | SCMP | |  |         |   | ICMP |  |   | IGMP |  |    Internet
 | +------+ |  |         |   +------+  |   +------+  |     Layer
 |    |     |  |         |      |      |      |      |
 V    V     V  V         V      V      V      V      V

+-----------------+ +-----------------------------------+ | STream protocol |->| Internet Protocol | +-----------------+ +-----------------------------------+

           | \   / |
           |  \ /  |
           |   X   |                                  ------------
           |  / \  |
           | /   \ |
           VV     VV

+----------------+ +----------------+ | (Sub-) Network |...| (Sub-) Network | (Sub-)Network | Protocol | | Protocol | Layer +----------------+ +----------------+

                Figure 1.  Protocol Relationships

Introduction

ST has been developed to support efficient delivery of streams of packets to either single or multiple destinations in applications requiring guaranteed data rates and controlled delay characteristics. The motivation for the original protocol was that IP [2] [15] did not provide the delay and data rate characteristics necessary to support voice applications.

ST is an internet protocol at the same layer as IP, see Figure 1. ST differs from IP in that IP, as originally envisioned, did not require routers (or intermediate systems) to maintain state information describing the streams of packets flowing through them. ST incorporates the concept of streams across an internet. Every intervening ST entity maintains state information for each stream that passes through it. The stream state includes forwarding information, including multicast support for efficiency, and resource information, which allows network or link bandwidth and queues to be assigned to a specific stream. This pre-allocation of resources allows data packets to be forwarded with low delay, low overhead, and a low probability of loss due to congestion. The characteristics of a stream, such as the number and location of the endpoints, and the bandwidth required, may be modified during the lifetime of the stream. This allows ST to give a real time application the guaranteed and predictable communication characteristics it requires, and is a good vehicle to support an application whose communications requirements are relatively predictable.

ST proved quite useful in several early experiments that involved voice conferences in the Internet. Since that time, ST has also been used to support point-to-point streams that include both video and voice. Recently, multimedia conferencing applications have been developed that need to exchange real-time voice, video, and pointer data in a multi-site conferencing environment. Multimedia conferencing across an internet is an application for which ST provides ideal support. Simulation and wargaming applications [14] also place similar requirements on the communication system. Other applications may include scientific visualization between a number of workstations and one or more remote supercomputers, and the collection and distribution of real-time sensor data from remote sensor platforms. ST may also be useful to support activities that are currently supported by IP, such as bulk file transfer using TCP.

Transport protocols above ST include the Packet Video Protocol (PVP) [5] and the Network Voice Protocol (NVP) [4], which are end-to-end protocols used directly by applications. Other transport layer protocols that may be used over ST include TCP [16], VMTP [3], etc. They provide the user interface, flow control, and packet ordering. This specification does not describe these higher layer protocols.

2.1. Major Differences Between ST and ST-II

  ST-II supports a wider variety of applications than did the
  original ST.  The differences between ST and ST-II are fairly
  straight forward yet provide great improvements.  Four of the more
  notable differences are:
     1  ST-II is decoupled from the Access Controller (AC).  The
        AC, as well as providing a rudimentary access control
        function, also served as a centralized repository and
        distributor of the conference information.  If an AC is
        necessary, it should be an entity in a higher layer
        protocol.  A large variety of applications such as
        conferencing, distributed simulations, and wargaming can
        be run without an explicit AC.
     2  The basic stream construct of ST-II is a directed tree
        carrying traffic away from a source to all the
        destinations, rather than the original ST's omniplex
        structure.  For example, a conference is composed of a
        number of such trees, one for traffic from each
        participant.  Although there are more (simplex) streams in
        ST-II, each is much simpler to manage, so the aggregate is
        much simpler.  This change has a minimal impact on the
        application.
     3  ST-II defines a number of the robustness and recovery
        mechanisms that were left undefined in the original ST
        specification.  In case of a network or ST Agent failure,
        a stream may optionally be repaired automatically (i.e.,
        without intervention from the user or the application)
        using a pruned depth first search starting at the ST Agent
        immediately preceding the failure.
     4  ST-II does not make an inherent distinction between
        streams connecting only two communicants and streams among
        an arbitrary number of communicants.
  This memo is the specification for the ST-II Protocol.  Since
  there should be no ambiguity between the original ST specification
  and the specification herein, the protocol is simply called ST
  hereafter.
  ST is the protocol used by ST entities to exchange information.
  The same protocol is used for communication among all ST entities,
  whether they communicate with a higher layer protocol or forward
  ST packets between attached networks.
  The remainder of this section gives a brief overview of the ST
  Protocol.  Section 3 (page 17) provides a detailed description of
  the operations required by the protocol.  Section 4 (page 75)
  provides descriptions of the ST Protocol Data Units exchanged
  between ST entities.  Issues that have not yet been fully
  addressed are presented in Section 5 (page 131).  A glossary and
  list of references are in Sections 6 (page 135) and 7 (page 143),
  respectively.
  This memo also defines "subsets" of ST that can be implemented.  A
  subsetted implementation does not have full ST functionality, but
  it can interoperate with other similarly subsetted
  implementations, or with a full implementation, in a predictable
  and consistent manner.  This approach allows an implementation to
  be built and provide service with minimum effort, and gives it an
  immediate and well defined growth path.

2.2. Concepts and Terminology

  The ST packet header is not constrained to be compatible with the
  IP packet header, except for the IP Version Number (the first four
  bits) that is used to distinguish ST packets (IP Version 5) from
  IP packets (IP Version 4).  The ST packets, or protocol data units
  (PDUs), can be encapsulated in IP either to provide connectivity
  (possibly with degraded service) across portions of an internet
  that do not provide support for ST, or to allow access to services
  such as security that are not provided directly by ST.
  An internet entity that implements the ST Protocol is called an
  "ST Agent".  We refer to two kinds of ST agents:  "host ST
  agents", also called "host agents" and "intermediate ST agents",
  also called "intermediate agents".  The ST agents functioning as
  hosts are sourcing or sinking data to a higher layer protocol or
  application, while ST agents functioning as intermediate agents
  are forwarding data between directly attached networks.  This
  distinction is not part of the protocol, but is used for
  conceptual purposes only.  Indeed, a given ST agent may be
  simultaneously performing both host and intermediate roles.  Every
  ST agent should be capable of delivering packets to a higher layer
  protocol.  Every ST agent can replicate ST data packets as
  necessary for multi-destination delivery, and is able to send
  packets whether received from a network interface or a higher
  layer protocol.  There are no other kinds of ST agents.
  ST provides applications with an end-to-end flow oriented service
  across an internet.  This service is implemented using objects
  called "streams".  ST data packets are not considered to be
  totally independent as are IP data packets.  They are transmitted
  only as part of a point-to-point or point-to-multi- point stream.
  ST creates a stream during a setup phase before data is
  transmitted.  During the setup phase, routes are selected and
  internetwork resources are reserved.  Except for explicit changes
  to the stream, the routes remain in effect until the stream is
  explicitly torn down.
  An ST stream is:
     o  the set of paths that data generated by an application
        entity traverses on its way to its peer application
        entity(s) that receive it,
     o  the resources allocated to support that transmission of
        data, and
     o  the state information that is maintained describing that
        transmission of data.
  Each stream is identified by a globally unique "Name";  see
  Section 4.2.2.8 (page 87).  The Name is specified in ST control
  operations, but is not used in ST data packets.  A set of streams
  may be related as members of a larger aggregate called a "group".
  A group is identified by a "Group Name";  see Section 3.7.3 (page
  56).
  The end-users of a stream are called the "participants" in the
  stream.  Data travels in a single direction through any given
  stream.  The host agent that transmits the data into the stream is
  called the "origin", and the host agents that receive the data are
  called the "targets".  Thus, for any stream one participant is the
  origin and the others are the targets.
  A stream is "multi-destination simplex" since data travels across
  it in only one direction:  from the origin to the targets.  A
  stream can be viewed as a directed tree in which the origin is the
  root, all the branches are directed away from the root toward the
  targets, which are the leaves.  A "hop" is an edge of that tree.
  The ST agent that is on the end of an edge in the direction toward
  the origin is called the "previous-hop ST agent", or the
  "previous-hop".  The ST agents that are one hop away from a
  previous-hop ST agent in the direction toward the targets are
  called the "next-hop ST agents", or the "next-hops".  It is
  possible that multiple edges between a previous-hop and several
  next-hops are actually implemented by a network level multicast
  group.
  Packets travel across a hop for one of two purposes:  data or
  control.  For ST data packet handling, hops are marked by "Hop
  IDentifiers" (HIDs) used for efficient forwarding instead of the
  stream's Name.  A HID is negotiated among several agents so that
  data forwarding can be done efficiently on both a point-to-point
  and multicast basis.  All control message exchange is done on a
  point-to-point basis between a pair of agents.  For control
  message handling, Virtual Link Identifiers are used to quickly
  dispatch the control messages to the proper stream's state
  machine.
  ST requires routing decisions to be made at several points in the
  stream setup and management process.  ST assumes that an
  appropriate routing algorithm exists to which ST has access; see
  Section 3.8.1 (page 69).  However, routing is considered to be a
  separate issue.  Thus neither the routing algorithm nor its
  implementation is specified here.  A routing algorithm may attempt
  to minimize the number of hops to the target(s), or it may be more
  intelligent and attempt to minimize the total internet resources
  consumed.  ST operates equally well with any reasonable routing
  algorithm.  The availability of a source routing option does not
  eliminate the need for an appropriate routing algorithm in ST
  agents.

2.3. Relationship Between Applications and ST

  It is the responsibility of an ST application entity to exchange
  information among its peers, usually via IP, as necessary to
  determine the structure of the communication before establishing
  the ST stream.  This includes:
     o  identifying the participants,
     o  determining which are targets for which origins,
     o  selecting the characteristics of the data flow between any
        origin and its target(s),
     o  specifying the protocol that resides above ST,
     o  identifying the Service Access Point (SAP), port, or
        socket relevant to that protocol at every participant, and
     o  ensuring security, if necessary.
  The protocol layer above ST must pass such information down to the
  ST protocol layer when creating a stream.
  ST uses a flow specification, abbreviated herein as "FlowSpec", to
  describe the required characteristics of a stream.  Included are
  bandwidth, delay, and reliability parameters.  Additional
  parameters may be included in the future in an extensible manner.
  The FlowSpec describes both the desired values and their minimal
  allowable values.  The ST agents thus have some freedom in
  allocating their resources.  The ST agents accumulate information
  that describes the characteristics of the chosen path and pass
  that information to the origin and the targets of the stream.
  ST stream setup control messages carry some information that is
  not specifically relevant to ST, but is passed through the
  interface to the protocol that resides above ST.  The "next
  protocol identifier" ("NextPcol") allows ST to demultiplex streams
  to a number of possible higher layer protocols.  The SAP
  associated with each participant allows the higher layer protocol
  to further demultiplex to a specific application entity.  A
  UserData parameter is provided;  see Section 4.2.2.16 (page 98).

2.4. ST Control Message Protocol

  ST agents create and manage a stream using the ST Control Message
  Protocol (SCMP).  Conceptually, SCMP resides immediately above ST
  (as does ICMP above IP) but is an integral part of ST.  Control
  messages are used to:
     o  create streams,
     o  refuse creation of a stream,
     o  delete a stream in whole or in part,
     o  negotiate or change a stream's parameters,
     o  tear down parts of streams as a result of router or
        network failures, or transient routing inconsistencies,
        and
     o  reroute around network or component failures.
  SCMP follows a request-response model.  SCMP reliability is
  ensured through use of retransmission after timeout;  see Section
  3.7.6 (page 66).
  An ST application that will transmit data requests its local ST
  agent, the origin, to create a stream.  While only the origin
  requests creation of a stream, all the ST agents from the origin
  to the targets participate in its creation and management.  Since
  a stream is simplex, each participant that wishes to transmit data
  must request that a stream be created.
  An ST agent that receives an indication that a stream is being
  created must:
     1  negotiate a HID with the previous-hop identifying the
        stream,
     2  map the list of targets onto a set of next-hop ST agents
        through the routing function,
     3  reserve the local and network resources required to
        support the stream,
     4  update the FlowSpec, and
     5  propagate the setup information and partitioned target
        list to the next-hop ST agents.
  When a target receives the setup message, it must inquire from the
  specified application process whether or not it is willing to
  accept the stream, and inform the origin accordingly.
  Once a stream is established, the origin can safely send data.  ST
  and its implementations are optimized to allow fast and efficient
  forwarding of data packets by the ST agents using the HIDs, even
  at the cost of adding overhead to stream creation and management.
  Specifically, the forwarding decisions, that is, determining the
  set of next-hop ST agents to which a data packet belonging to a
  particular stream will be sent, are made during the stream setup
  phase.  The shorthand HIDs are negotiated at that time, not only
  to reduce the data packet header size, but to access efficiently
  the stream's forwarding information.  When possible, network-layer
  multicast is used to forward a data packet to multiple next-hop ST
  agents across a network.  Note that when network-layer multicast
  is used, all members of the multicast group must participate in
  the negotiation of a common HID.
  An established stream can be modified by adding or deleting
  targets, or by changing the network resources allocated to it.  A
  stream may be torn down by either the origin or the targets.  A
  target can remove itself from a stream leaving the others
  unaffected.  The origin can similarly remove any subset of the
  targets from its stream leaving the remainder unaffected.  An
  origin can also remove all the targets from the stream and
  eliminate the stream in its entirety.
  A stream is monitored by the involved ST agents.  If they detect a
  failure, they can attempt recovery.  In general, this involves
  tearing down part of the stream and rebuilding it to bypass the
  failed component(s).  The rebuilding always occurs from the origin
  side of the failure.  The origin can optionally specify whether
  recovery is to be attempted automatically by intermediate ST
  agents or whether a failure should immediately be reported to the
  origin.  If automatic recovery is selected but an intermediate
  agent determines it cannot effect the repair, it propagates the
  failure information backward until it reaches an agent that can
  effect repair.  If the failure information propagates back to the
  origin, then the application can decide if it should abort or
  reattempt the recovery operation.
  Although ST supports an arbitrary connection structure, we
  recognize that certain stream topologies will be common and
  justify special features, or options, which allow for optimized
  support.  These include:
     o  streams with only a single target (see Section 3.6.2 (page
        44)), and
     o  pairs of streams to support full duplex communication
        between two points (see Section 3.6.3 (page 45)).
  These features allow the most frequently occurring topologies to
  be supported with less setup delay, with fewer control messages,
  and with less overhead than the more general situations.

2.5. Flow Specifications

  Real time data, such as voice and video, have predictable
  characteristics and make specific demands of the networks that
  must transfer it.  Specifically, the data may be transmitted in
  packets of a constant size that are produced at a constant rate.
  Alternatively, the bandwidth may vary, due either to variable
  packet size or rate, with a predefined maximum, and perhaps a
  non-zero minimum.  The variation may also be predictable based on
  some model of how the data is generated.  Depending on the
  equipment used to generate the data, the packet size and rate may
  be negotiable.  Certain applications, such as voice, produce
  packets at the given rate only some of the time.  The networks
  that support real time data must add minimal delay and delay
  variance, but it is expected that they will be non-zero.
  The FlowSpec is used for three purposes.  First, it is used in the
  setup message to specify the desired and minimal packet size and
  rate required by the origin.  This information is used by ST
  agents when they attempt to reserve the resources in the
  intervening networks.  Second, when the setup message reaches the
  target, the FlowSpec contains the packet size and rate that was
  actually obtained along the path from the origin, and the accrued
  mean delay and delay variance expected for data packets along that
  path.  This information is used by the target to determine if it
  wishes to accept the connection.  The target may reduce reserved
  resources if it wishes to do so and if the possibility is still
  available.  Third, if the target accepts the connection, it
  returns the updated FlowSpec to the origin, so that the origin can
  decide if it still wishes to participate in the stream with the
  characteristics that were actually obtained.
  When the data transmitted by stream users is generated at varying
  rates, including bursts of varying rate and duration, there is an
  opportunity to provide service to more subscribers by providing
  guaranteed service for the average data rate of each stream, and
  reserving additional network capacity, shared among all streams,
  to service the bursts.  This concept has been recognized by analog
  voice network providers leading to the principle of time assigned
  speech interpolation (TASI) in which only the talkspurts of a
  speech conversation are transmitted, and, during silence periods,
  the circuit can be used to send the talkspurts of other
  conversations.  The FlowSpec is intended to assist algorithms that
  perform similar kinds of functions.  We do not propose such
  algorithms here, but rather expect that this will be an area for
  experimentation.  To allow for experiments, and a range of ways
  that application traffic might be characterized, a "DutyFactor" is
  included in the FlowSpec and we expect that a "burst descriptor"
  will also be needed.
  The FlowSpec will need to be revised as experience is gained with
  connections involving numerous participants using multiple media
  across heterogeneous internetworks.  We feel a change of the
  FlowSpec does not necessarily require a new version of ST, it only
  requires the FlowSpec version number be updated and software to
  manage the new FlowSpec to be distributed.  We further suggest
  that if the change to the FlowSpec involves additional information
  for improved operation, such as a burst descriptor, that it be
  added to the end of the FlowSpec and that the current parameters
  be maintained so that obsolete software can be used to process the
  current parameters with minimum modifications.
                  ****                      ****
                 *    *     ST Agent 1     *    *       +---+
                *      *------- o ---------*    *-------+ B |
                *      *                   *    *       +---+
                *      *                    ****
  +---+         *      *                     |
  |   |         *      *                     |
  | A +---------*      *                     o ST Agent 3
  |   |         *      *                     |
  +---+         *      *                     |
                *      *                    ***
                *      *                   *   *        +---+
                *      *    ST Agent 2    *     *-------+ C |
                *      *------- o --------*     *       +---+
                 *    *                   *     *
                  ****                    *     *
                                          *     *
                             +---+        *     *       +---+
                             | E +--------*     *-------+ D |
                             +---+         *   *        +---+
                                            ***
     Figure 2.  Topology Used in Protocol Exchange Diagrams
                  ****     ST Agent 1       ****
                 * +--+---14--- o -----15--+----+--44---+---+
                *  | +-+--11---   -----16--+-+  *       | B |
                *  | | *                   * |+-+--45---+---+
                *  | | *                    *++*
  +---+         *  | | *                  34 ||32
  |   +----4----+--+ | *                     ||
  | A +----6----+----+ *                     o ST Agent 3
  |   +----5----+---+  *                     |
  +---+         *   |  *                     | 33
                *   |  *       ST           *+*
                *   |  *      Agent        * | *
                *   |  *        2 -----24-+--+  *       +---+
                *   +--+--23--- o -----25-+-----+--54---+ C |
                 *    *           -----26-+---+ *       +---+
                  ****            -----27-+-+ | *
                                          * | | *
                             +---+        * | | *       +---+
                             | E +---74---+-+ +-+--64---+ D |
                             +---+         *   *        +---+
                                            ***
     Figure 3.  Virtual Link Identifiers for SCMP Messages

ST Control Message Protocol Functional Description

This section contains a functional description of the ST Control Message Protocol (SCMP); Section 4 (page 75) specifies the formats of the control message PDUs. We begin with a description of stream setup. Mechanisms used to deal with the exceptional cases are then presented. Complications due to options that an application or a ST agent may select are then detailed. Once a stream has been established, the data transfer phase is entered; it is described. Once the data transfer phase has been completed, the stream must be torn down and resources released; the control messages used to perform this function are presented. The resources or participants of a stream may be changed during the lifetime of the stream; the procedures to make changes are described. Finally, the section concludes with a description of some ancillary functions, such as failure detection and recovery, HID negotiation, routing, security, etc.

To help clarify the SCMP exchanges used to setup and maintain ST streams, we have included a series of figures in this section. The protocol interactions in the figures assume the topology shown in Figure 2. The figures, taken together,

o  Create a stream from an application at A to three peers at B,
   C and D,
o  Add a peer at E,
o  Disconnect peers B and C, and
o  D drops out of the stream.

Other figures illustrate exchanges related to failure recovery.

In order to make the dispatch function within SCMP more uniform and efficient, each end of a hop is assigned, by the agent at that end, a Virtual Link Identifier that uniquely (within that agent) identifies the hop and associates it with a particular stream's state machine(s). The identifier at the end of a link that is sending a message is called the Sender Virtual Link Identifier (SVLId); that at the receiving end is called the Receiver Virtual Link Identifier (RVLId). Whenever one agent sends a control message for the other to receive, the sender will place the receiver's identifier into the RVLId field of the message and its own identifier in the SVLId field. When a reply to the message is sent, the values in SVLId and RVLId fields will be reversed, reflecting the fact the sender and receiver roles are reversed. VLIds with values zero through three are received and should not be assigned in response to CONNECT messages. Figure 3 shows the hops that will be used in the examples and summarizes the VLIds that will be assigned to them.

Similarly, Figure 4 summarizes the HIDs that will eventually be negotiated as the stream is created.

                  ****     ST Agent 1       ****
                 *  +>+--1200-> o -------->+--->+-3600->+---+
                *   ^  *                   *    *       | B |
                *   |  *                   * +->+-6000->+---+
                *   |  *                    *+**
  +---+         *   |  *                     ^
  |   +-------->+-->+  *                     |
  | A |         *      *                     o St Agent 3
  |   +-------->+-->+  *                     ^
  +---+         *   |  *                     | 4801
                *   |  *                    *+*
                *   V  *   ST Agent 2      * ^ *        +---+
                 *  +>+--2400-> o ------->+->+->+-4800->+ C |
                  ****                    *  |  * 4801  +---+
                                          *  |  *
                             +---+        *  V  *       +---+
                             | E +<-4800--+<-+->+-4800->+ D |
                             +---+         *   *  4801  +---+
                                            ***
         Figure 4.  HIDs Assigned for ST User Packets

Some of the diagrams that follow form a progression. For example, the steps required initially to establish a connection are spread across five figures. Within a progression, the actions on the first diagram are numbered 1.1, 1.2, etc.; within the second diagram they are numbered 2.1, 2.2, etc. Points where control leaves one diagram to enter another are identified with a continuation arrow "-->>", and are continued with "[a.b] >>-->" in the other diagram. The number in brackets shows the label where control left the earlier diagram. The reception of simple acknowledgments, e.g., ACKs, in one figure from another is omitted for clarity.

3.1. Stream Setup

  This section presents a description of stream setup assuming that
  everything succeeds -- HIDs are approved, any required resources
  are available, and the routing is correct.
  3.1.1.        Initial Setup at the Origin
     As described in Section 2.3 (page 11), the application has
     collected the information necessary to determine the
     participants in the communication before passing it to the host
     ST agent at the origin.  The host ST agent will take this
     information, allocate a Name for the stream (see Section
     4.2.2.8 (page 87)), and create a stream.
  3.1.2.        Invoking the Routing Function
     An ST agent that is setting up a stream invokes a routing
     function to find a path to reach each of the targets specified
     in the TargetList.  This is similar to the routing decision in
     IP.  However, in this case the route is to a multitude of
     targets rather than to a single destination.
     The set of next-hops that an ST agent would select is not
     necessarily the same as the set of next hops that IP would
     select given a number of independent IP datagrams to the same
     destinations.  The routing algorithm may attempt to optimize
     parameters other than the number of hops that the packets will
     take, such as delay, local network bandwidth consumption, or
     total internet bandwidth consumption.
     The result of the routing function is a set of next-hop ST
     agents and the parameters of the intervening network(s).  The
     latter permit the ST agent to determine whether the selected
     network has the resources necessary to support the level of
     service requested in the FlowSpec.
  3.1.3.        Reserving Resources
     The intent of ST is to provide a guaranteed level of service by
     reserving internet resources for a stream during a setup phase
     rather than on a per packet basis.  The relevant resources are
     not only the forwarding information maintained by the ST
     agents, but also packet switch processor bandwidth and buffer
     space, and network bandwidth and multicast group identifiers.
     Reservation of these resources can help to increase the
     reliability and decrease the delay and delay variance with
     which data packets are delivered.  The FlowSpec contains all
     the information needed by the ST agent to allocate the
     necessary resources.  When and how these resources are
     allocated depends on the details of the networks involved, and
     is not specified here.
     If an ST agent must send data across a network to a single
     next-hop ST agent, then only the point-to-point bandwidth needs
     to be reserved.  If the agent must send data to multiple next-
     hop agents across one network and network layer multicasting is
     not available, then bandwidth must be reserved for all of them.
     This will allow the ST agent to
     use replication to send a copy of the data packets to each
     next-hop agent.
     If multicast is supported, its use will decrease the effort
     that the ST agent must expend when forwarding packets and also
     reduces the bandwidth required since one copy can be received
     by all next-hop agents.  However, the setup phase is more
     complicated.  A network multicast address must be allocated
     that contains all those next-hop agents, the sender must have
     access to that address, the next-hop agents must be informed of
     the address so they can join the multicast group identified by
     it (see Section 4.2.2.7 (page 86)), and a common HID must be
     negotiated.
     The network should consider the bandwidth and multicast
     requirements to determine the amount of packet switch
     processing bandwidth and buffer space to reserve for the
     stream.  In addition, the membership of a stream in a Group may
     affect the resources that have to be allocated;  see Section
     3.7.3 (page 56).
     Few networks in the Internet currently offer resource
     reservation, and none that we know of offer reservation of all
     the resources specified here.  Only the Terrestrial Wideband
     Network (TWBNet) [7] and the Atlantic Satellite Network
     (SATNET) [9] offer(ed) bandwidth reservation.  Multicasting is
     more widely supported.  No network provides for the reservation
     of packet switch processing bandwidth or buffer space.  We hope
     that future networks will be designed to better support
     protocols like ST.
     Effects similar to reservation of the necessary resources may
     be obtained even when the network cannot provide direct support
     for the reservation.  Certainly if total reservations are a
     small fraction of the overall resources, such as packet switch
     processing bandwidth, buffer space, or network bandwidth, then
     the desired performance can be honored if the degree of
     confidence is consistent with the requirements as stated in the
     FlowSpec.  Other solutions can be designed for specific
     networks.
  3.1.4.        Sending CONNECT Messages
     A VLId and a proposed HID must be selected for each next-hop
     agent.  The control packets for the next-hop must carry the
     VLId in the SVLId field.  The data packets transmitted in the
     stream to the next-hop must carry the HID in the ST Header.
     The ST agent sends a CONNECT message to each of the ST agents
     identified by the routing function.  Each CONNECT message
     contains the VLId, the proposed HID (the HID Field option bit
     must be set, see Section 3.6.1 (page 44)), an updated FlowSpec,
     and a TargetList.  In general, the HID, FlowSpec, and
     TargetList will depend on both the next-hop and the intervening
     network.  Each TargetList is a subset of the received (or
     original) TargetList, identifying the targets that are to be
     reached through the next-hop to which the CONNECT message is
     being sent.  Note that a CONNECT message to a single next-hop
     might have to be fragmented into multiple CONNECTs if the
     single CONNECT is too large for the intervening network's MTU;
     fragmentation is performed by further dividing the TargetList.
     If multiple next-hops are to be reached through a network that
     supports network level multicast, a different CONNECT message
     must nevertheless be sent to each next-hop since each will have
     a different TargetList;  see Section 4.2.3.5 (page 105).
     However, since an identical copy of each ensuing data packet
     will reach each member of the multicast group, all the CONNECT
     messages must propose the same HID.  See Section 3.7.4 (page
     58) for a detailed discussion on HID selection.
     In the example of Figure 2, the routing function might return
     that B is reachable via Agent 1 and C and D are reachable via
     Agent 2.  Thus A would create two CONNECT messages, one each
     for Agents 1 and 2, as illustrated in Figure 5.  Assuming that
     the proposed HIDs are available in the receiving agents, they
     would each send a responding HID-APPROVE back to Agent A.
     Application  Agent A                    Agent 1    Agent 2
1.1. (open B,C,D)
           V
1.2.       +-> (routing to B,C,D)
                     V
1.3.                 +->(reserve resources from A to Agent 1)
                     |  V
1.4.                 |  +-> CONNECT B --------->>
                     |      <RVLId=0><SVLId=4>
                     |      <Ref=10><HID=1200>
                     V
1.5.                 +->(reserve resources from A to Agent 2)
                        V
1.6.                    +-> CONNECT C,D ------------------>>
                            <RVLId=0><SVLId=5>
                            <Ref=15><HID=2400>
           Figure 5.  Origin Sending CONNECT Message
  3.1.5.        CONNECT Processing by an Intermediate Agent
     An ST agent receiving a CONNECT message should, assuming no
     errors, quickly select a VLId and respond to the previous-hop
     with either an ACK, a HID-REJECT, or a HID-APPROVE message, as
     is appropriate.  This message must identify the CONNECT to
     which it corresponds by including the CONNECT's Reference
     number in its Reference field.  Note that the VLId that this
     agent selects is placed in the SVLId of the response, and the
     previous-hop's VLId (which is contained in the SVLId of the
     CONNECT) is copied into the RVLId of the response.  If the
     agent is not a target, it must then invoke the routing
     function, reserve resources, and send a CONNECT message(s) to
     its next-hop(s), as described in Sections 3.1.2-4 (pages 19-
     20).
   Agent A                   Agent 1                      Agent B
[1.4] >>-> CONNECT B -------->+--+
           <RVLId=0><SVLId=4> |  V

<Ref=10><HID=1200> | (routing to B)

                              |  V

V +->(reserve resources from 1 to B)

+<- HID-APPROVE <------+ V

<RVLId=4><SVLId=14> +-> CONNECT B ---------->>

           <Ref=10><HID=1200>           <RVLId=0><SVLId=15>
                                        <Ref=110><HID=3600>
   Agent A                   Agent 2                      Agent C
[1.6] >>-> CONNECT C,D ------>+-+
           <RVLId=0><SVLId=5> | V

<Ref=15><HID=2400> | (routing to C,D)

                              | V

V +-->(reserve resources from 2 to C)

+<- HID-APPROVE <------+ | V

<RVLId=5><SVLId=23> | +-> CONNECT C ---------->>

           <Ref=15><HID=2400>   |       <RVLId=0><SVLId=25>
                                |       <Ref=210><HID=4800>
                                |
                                |                         Agent D
                                V

+->(reserve resources from 2 to D)

                                    V

2.10. +-> CONNECT D ---------->>

                                        <RVLId=0><SVLId=26>
                                        <Ref=215><HID=4800>
     Figure 6.  CONNECT Processing by an Intermediate Agent
     The resources listed as Desired in a received FlowSpec may not
     correspond to those actually reserved in either the ST agent
     itself or in the network(s) used to reach the next-hop
     agent(s).  As long as the reserved resources are sufficient to
     meet the specified Limits, the copy of the FlowSpec sent to a
     next-hop must have the Desired resources updated to reflect the
     resources that were actually obtained.  For example, the
     Desired bandwidth might be reduced because the network to the
     next-hop could not provide all of the desired bandwidth.  Also,
     the delay and delay variance are appropriately increased, and
     the link MTU may require that the DesPDUBytes field be reduced.
     (The minimum requirements that the origin had entered into the
     FlowSpec Limits fields cannot be altered by the intermediate or
     target agents.)
  3.1.6.        Setup at the Targets
     An ST agent that is the target of a CONNECT, whether from an
     intermediate ST agent, or directly from the origin host ST
     agent, must respond first (assuming no errors) with either a
     HID-REJECT or HID-APPROVE.  After inquiring from the specified
     application process whether or not it is willing to accept the
     connection, the agent must also respond with either an ACCEPT
     or a REFUSE.
     In particular, the application must be presented with
     parameters from the CONNECT, such as the Name, FlowSpec,
     Options, and Group, to be used as a basis for its decision.
     The application is identified by a combination of the NextPcol
     field and the SAP field in the (usually) single remaining
     Target of the TargetList.  The contents of the SAP field may
     specify the "port" or other local identifier for use by the
     protocol layer above the host ST layer.  Subsequently received
     data packets will carry a short hand identifier (the HID) that
     can be mapped into this information and be used for their
     delivery.
     The responses to the CONNECT message are sent to the previous-
     hop from which the CONNECT was received.  An ACCEPT contains
     the Name of the stream and the updated FlowSpec.  Note that the
     application might have reduced the desired level of service in
     the received FlowSpec before accepting it.  The target must not
     send the ACCEPT until HID negotiation has been successfully
     completed.
     Since the ACCEPT or REFUSE message must be acknowledged by the
     previous-hop, it is assigned a new Reference number that will
     be returned in the ACK.  The CONNECT to which the ACCEPT or
     REFUSE is a reply is identified by placing the CONNECT's
     Reference number in the LnkReference field of the ACCEPT or
     REFUSE.
       Agent 1                    Agent B       Application B
3.1.                                             (proc B listening)
     [2.4] >>-> CONNECT B ---------->+------------------+
                <RVLId=0><SVLId=15>  |                  |
3.2.               <Ref=110><HID=3600>  V          (proc B accepts)
3.3.           +<- HID-APPROVE <--------+                  |
                <RVLId=15><SVLId=44>                    |
                <Ref=110><HID=3600>                     V
3.4.                       (wait until HID negotiated) <---+
                                     V
3.5.       <<--+<- ACCEPT B <-----------+
                <RVLId=15><SVLId=44>
                <Ref=410><LnkRef=110>
       Agent 2                    Agent C       Application C
3.6.                                             (proc C listening)
     [2.8] >>-> CONNECT C ---------->+------------------+
                <RVLId=0><SVLId=25>  |                  |
3.7.               <Ref=210><HID=4800>  V          (proc C accepts)
3.8.           +<- HID-APPROVE <--------+                  |
                <RVLId=25><SVLId=54>                    |
                <Ref=210><HID=4800>                     V
3.9.                       (wait until HID negotiated) <---+
                                     V
3.10.      <<--+<- ACCEPT C <-----------+
                <RVLId=25><SVLId=54>
                <Ref=510><LnkRef=210>
       Agent 2                    Agent D       Application D
3.11.                                            (proc D listening)
    [2.10] >>-> CONNECT D ---------->+------------------+
                <RVLId=0><SVLId=26>  |                  |
3.12.              <Ref=215><HID=4800>  V          (proc D accepts)
3.13.          +<- HID-APPROVE <--------+                  |
                <RVLId=26><SVLId=64>                    |
                <Ref=215><HID=4800>                     V
3.14.                      (wait until HID negotiated) <---+
                                     V
3.15.      <<--+<- ACCEPT D <-----------+
                <RVLId=26><SVLId=64>
                <Ref=610><LnkRef=215>
          Figure 7.  CONNECT Processing by the Target
  3.1.7.        ACCEPT Processing by an Intermediate Agent
     When an intermediate ST agent receives an ACCEPT, it first
     verifies that the message is a response to an earlier CONNECT.
     If not, it responds to the next-hop ST agent with an ERROR-IN-
     REPLY (LnkRefUnknown) message.  Otherwise, it responds to the
     next-hop ST agent with an ACK, and propagates
     the ACCEPT message to the previous-hop along the same path
     traced by the CONNECT but in the reverse direction toward the
     origin.  The ACCEPT should not be propagated until all HID
     negotiations with the next-hop agent(s) have been successfully
     completed.
     The FlowSpec is included in the ACCEPT message so that the
     origin and intermediate ST agents can gain access to the
     information that was accumulated as the CONNECT traversed the
     internet.  Note that the resources, as specified in the
     FlowSpec in the ACCEPT message, may differ from the resources
     that were reserved by the agent when the CONNECT was
  Agent A                     Agent 1                    Agent B
                                 +<-+<- ACCEPT B <-------<< [3.5]
                                 V  |   <RVLId=15><SVLId=44>

(wait for ACCEPTS) V <Ref=410><LnkRef=110>

V +-> ACK --------------->+

(wait until HID negotiated)<-+ <RVLId=44><SVLId=15>

                              V         <Ref=410>

<<--+<-- ACCEPT B <---------+

           <RVLId=4><SVLId=14>
           <Ref=115><LnkRef=10>
   Agent A                    Agent 2                    Agent C
                                 +<-+<- ACCEPT C <------<< [3.10]
                                 |  |   <RVLId=25><SVLId=54>
                                 |  V   <Ref=510><LnkRef=210>

| +-> ACK --------------->+

                                 |      <Ref=510>
                                 |      <RVLId=54><SVLId=25>
                                 |
                                 |                       Agent D
                                 V
                                 +<-+<- ACCEPT D <------<< [3.15]
                                 V  |   <RVLId=26><SVLId=64>

(wait for ACCEPTS) V <Ref=610><LnkRef=215>

V +-> ACK --------------->+

(wait until HID negotiated)<-+ <RVLId=64><SVLId=26>

                              V         <Ref=610>

<<--+<- ACCEPT C <----------+

          <RVLId=5><SVLId=23> |
          <Ref=220><LnkRef=15>|
                              V

4.10. <<--+<- ACCEPT D <----------+

          <RVLId=5><SVLId=23>
          <Ref=225><LnkRef=15>
     Figure 8.  ACCEPT Processing by an Intermediate Agent
     originally processed.  However, the agent does not adjust the
     reservation in response to the ACCEPT.  It is expected that any
     excess resource allocation will be released for use by other
     stream or datagram traffic through an explicit CHANGE message
     initiated by the application at the origin if it does not wish
     to be charged for any excess resource allocations.
  3.1.8.        ACCEPT Processing by the Origin
     The origin will eventually receive an ACCEPT (or REFUSE or
     ERROR-IN-REQUEST) message from each of the targets.  As each
     ACCEPT is received, the application should be notified of the
     target and the resources that were successfully allocated along
     the path to it, as specified in the FlowSpec contained in the
     ACCEPT message.  The application may then use the information
     to either adopt or terminate the portion of the stream to each
     target.  When ACCEPTs (or failures) from all targets have been
     received at the origin, the application is notified that stream
     setup is complete, and that data may be sent.
     Application A   Agent A                  Agent 1   Agent 2
                        +<-- ACCEPT B <--------<< [4.4]
                        |    <RVLId=4><SVLId=14>
                        V    <Ref=115><LnkRef=10>

5.1. +--> ACK ----------------->+

                        |    <RVLId=14><SVLId=4>
                        V    <Ref=115>

5.2. +<-- (inform A of B's FlowSpec)

           |            +<-- ACCEPT C <----------------<< [4.9]
           |            |    <RVLId=5><SVLId=23>
           |            V    <Ref=220><LnkRef=15>

5.3. | +--> ACK ------------------------->+

           |            |    <RVLId=23><SVLId=5>
           |            V    <Ref=220>

5.4. +<-- (inform A of C's FlowSpec)

           |            +<-- ACCEPT D <----------------<< [4.10]
           |            |    <RVLId=5><SVLId=23>
           |            V    <Ref=225><LnkRef=15>

5.5. | +--> ACK ------------------------->+

           |            |    <RVLId=23><SVLId=5>
           |            V    <Ref=225>

5.6. +<-- (inform A of D's FlowSpec)

           V

5.7. (wait until HIDs negotiated)

           V

5.8. (inform A open to B,C,D)

           Figure 9.  ACCEPT Processing by the Origin
     There are several pieces of information contained in the
     FlowSpec that the application must combine before sending data
     through the stream.  The PDU size should be computed from the
     minimum value of the DesPDUBytes field from all ACCEPTs and the
     protocol layers above ST should be informed of the limit.  It
     is expected that the next higher protocol layer above ST will
     segment its PDUs accordingly.  Note, however, that the MTU may
     decrease over the life of the stream if new targets are
     subsequently added.  Whether the MTU should be increased as
     targets are dropped from a stream is left for further study.
     The available bandwidth and packet rate limits must also be
     combined.  In this case, however, it may not be possible to
     select a pair of values that may be used for all paths, e.g.,
     one path may have selected a low rate of large packets while
     another selected a high rate of small packets.  The application
     may remedy the situation by either tearing down the stream,
     dropping some participants, or creating a second stream.
     After any differences have been resolved (or some targets have
     been deleted by the application to permit resolution), the
     application at the origin should send a CHANGE message to
     release any excess resources along paths to those targets that
     exceed the resolved parameters for the stream, thereby reducing
     the costs that will be incurred by the stream.
  3.1.9.        Processing a REFUSE Message
     REFUSE messages are used to indicate a failure to reach an
     application at a target;  they are propagated toward the origin
     of a stream.  They are used in three situations:
      1  during stream setup or expansion to indicate that there
         is no satisfactory path from an ST agent to a target,
      2  when the application at the target either does not
         exist does not wish to be a participant, or wants to
         cease being a participant, and
      3  when a failure has been detected and the agents are
         trying to find a suitable path around the failure.
     The cases are distinguished by the ReasonCode field and an
     agent receiving a REFUSE message must examine that field in
     order to determine the proper action to be taken.  In
     particular, if the ReasonCode indicates that the CONNECT
     message reached the target then the REFUSE should be propagated
     back to the origin, releasing resources as appropriate along
     the way.  If the ReasonCode indicates that
     the CONNECT message did not reach the target then the
     intermediate (origin) ST agent(s) should check for alternate
     routes to the target before propagating the REFUSE back another
     hop toward the origin.  This implies that an agent must keep
     track of the next-hops that it has tried, on a target by target
     basis, in order not to get caught in a loop.
     An ST agent that receives a REFUSE message must acknowledge it
     by sending an ACK to the next-hop.  The REFUSE must also be
     propagated back to the previous-hop ST agent.  Note that the ST
     agent may not have any information about the target in

Appl. Agent A Agent 2 Agent E

                                           (proc E NOT listening)

(add E)

+----->+-> CONNECT E ---------->+->+

             <RVLId=23><SVLId=5>  |  |
             <Ref=65>             V  |

+<-- ACK <---------------+ |

              <RVLId=5><SVLId=23>    V

<Ref=65> (routing to E)

                                     V

(reserve resources 2 to E)

                                     V

+--> CONNECT E --------->+

                                          <RVLId=0><SVLId=27> |
                                          <Ref=115><HID=4600> |
                                                              V

+<-+<- REFUSE B <-----------+

                                  |  |   <RVLId=27><SVLId=74>
                                  |  |   <Ref=705><LnkRef=115>
                                  |  V   <RC=SAPUnknown>

| +-> ACK ---------------->+

                                  |  |   <RVLId=74><SVLId=27> |
                                  |  V   <Ref=705>            |

| (free link 27) V

10. V (free link 74) 11. +<- REFUSE B <-----------+

         |   <RVLId=5><SVLId=23>  |
         |   <Ref=550><LnkRef=65> V

12. | <RC=SAPUnknown> (free resources 2 to E)

         V

13. +-> ACK --------------->+

         |   <RVLId=23><SVLId=5>  |
         |   <Ref=550>            V

14. V (keep link 23 for C,D) 15. (keep link 5 for C,D)

  V

16. (inform application failed SAPUnknown)

               Figure 10.  Sending REFUSE Message
     the TargetList.  This may result from interacting DISCONNECT
     and REFUSE messages and should be logged and silently ignored.
     If, after deleting the specified target, the next-hop has no
     remaining targets, then those resources associated with that
     next-hop agent may be released.  Note that network resources
     may not actually be released if network multicasting is being

Appl. Agent A Agent 2 Agent 1 Agent 3 Agent B

(network from 1 to B fails)

(add B)

+-> CONNECT B ----------------->+

     <RVLId=0><SVLId=6>          |
     <Ref=35><HID=100>           |

+<- HID-APPROVE <---------------+

     <RVLId=6><SVLId=11>         |
     <Ref=35><HID=100>           V

(routing to B: no route)

                                 V

+<-+-- REFUSE B ----------------+

 |  |   <RVLId=6><SVLId=11>
 |  |   <Ref=155><LnkRef=35>
 |  V   <RC=NoRouteToDest>

| +-> ACK -------------------->+

 |  |   <RVLId=11><SVLId=6>      V

| V <Ref=155> (drop link 6)

V (drop link 11)

(find alternative route: via agent 2)

10. (resources from A to 2 already allocated:

 V   reuse control link & HID, no additional resources required)

11. +-> CONNECT B -------->+->+

     <RVLId=23><SVLId=5>|  |
     <Ref=40>           V  |

12. +<- ACK <--------------+ |

     <RVLId=5><SVLId=23>   V

13. <Ref=40> (routing to B: via agent 3)

                        V

14. +-> CONNECT B -->+ 15. <RVLId=0><SVLId=24> +-> CONNECT B --------->+

                     <Ref=245><HID=4801> V   <RVLId=0><SVLId=32> |

16. +<- HID-APPROVE -+ <Ref=310><HID=6000> |

                            <RVLId=24><SVLId=33>                 |
                            <Ref=245><HID=4801>                  V

17. +<- HID-APPROVE --------+

                                             <RVLId=32><SVLId=45>|
                                             <Ref=310><HID=6000> V

18. (ACCEPT handling follows normally to complete stream setup)

       Figure 11.  Routing Around a Failure
     used since they may still be required for traffic to other
     next-hops in the multicast group.
     When the REFUSE reaches a origin, the origin sends an ACK and
     notifies the application via the next higher layer protocol
     that the target listed in the TargetList is no longer part of
     the stream and also if the stream has no remaining targets.  If
     there are no remaining targets, the application may wish to
     terminate the stream.
     Figure 10 illustrates the protocol exchanges for processing a
     REFUSE generated at the target, either because the target
     application is not running or that the target application
     rejects membership in the stream.  Figure 11 illustrates the
     case of rerouting around a failure by an intermediate agent
     that detects a failure or receives a refuse.  The protocol
     exchanges used by an application at the target to delete itself
     from the stream is discussed in Section 3.3.3 (page 35).

3.2. Data Transfer

  At the end of the connection setup phase, the origin, each target,
  and each intermediate ST agent has a database entry that allows it
  to forward the data packets from the origin to the targets and to
  recover from failures of the intermediate agents or networks.  The
  database should be optimized to make the packet forwarding task
  most efficient.  The time critical operation is an intermediate
  agent receiving a packet from the previous-hop agent and
  forwarding it to the next-hop agent(s).  The database entry must
  also contain the FlowSpec, utilization information, the address of
  the origin and previous-hop, and the addresses of the targets and
  next-hops, so it can perform enforcement and recover from
  failures.
  An ST agent receives data packets encapsulated by an ST header.  A
  data packet received by an ST agent contains the non-zero HID
  assigned to the stream for the branch from the previous-hop to
  itself.  This HID was selected so that it is unique at the
  receiving ST agent and thus can be used, e.g., as an index into
  the database, to obtain quickly the necessary replication and
  forwarding information.
  The forwarding information will be network and implementation
  specific, but must identify the next-hop agent or agents and their
  respective HIDs.  It is suggested that the cached information for
  a next-hop agent include the local network address of the next-
  hop.  If the data packet must be forwarded to multiple next-hops
  across a single network that supports multicast, the database may
  specify a single HID and may identify the next-hops by a (local
  network) multicast address.
  If the network does not support multicast, or the next-hops are on
  different networks, then the database must indicate multiple
  (next-hop, HID) tuples.  When multiple copies of the data packet
  must be sent, it may be necessary to invoke a packet replicator.
  Data packets should not require fragmentation as the next higher
  protocol layer at the origin was informed of the minimum MTU over
  all paths in the stream and is expected to segment its PDUs
  accordingly.  However, it may be the case that a data packet that
  is being rerouted around a failed network component may be too
  large for the MTU of an intervening network.  This should be a
  transient condition that will be corrected as soon as the new
  minimum MTU has been propagated back to the origin.  Disposition
  by a mechanism other than dropping of the too large PDUs is left
  for further study.

3.3. Modifying an Existing Stream

  Some applications may wish to change the parameters of a stream
  after it has been created.  Possible changes include adding or
  deleting targets and changing the FlowSpec.  These are described
  below.
  3.3.1.        Adding a Target
     It is possible for an application to add a new target to an
     existing stream any time after ST has incorporated information
     about the stream into its database.  At a high level, the
     application entities exchanges whatever information is
     necessary.  Although the mechanism or protocol used to
     accomplish this is not specified here, it is necessary for the
     higher layer protocol to inform the host ST agent at the origin
     of this event.  The host ST agent at the target must also be
     informed unless this had previously been done.  Generally, the
     transfer of a target list from an ST agent to another, or from
     a higher layer protocol to a host ST agent, will occur
     atomically when the CONNECT is received.  Any information
     concerning a new target received after this point can be viewed
     as a stream expansion by the receiving ST agent.  However, it
     may be possible that an ST agent can utilize such information
     if it is received before it makes the relevant routing
     decisions.  These implementation details are not specified
     here, but implementations must be prepared to receive CONNECT
     messages that represent expansions of streams that are still in
     the process of being setup.
     To expand an existing stream, the origin issues one or more
     CONNECT messages that contain the Name, the VLId, the FlowSpec,
     and the TargetList specifying the new target or targets.  The
     origin issues multiple CONNECT messages if
     either the targets are to be reached through different next-hop
     agents, or a single CONNECT message is too large for the
     network MTU.  The HID Field option is not set since the HID has
     already been (or is being) negotiated for the hop;
     consequently, the CONNECT is acknowledged with an ACK instead
     of a HID-REJECT or HID-APPROVE.

Application Agent A Agent 2 Agent E

(open E)

V (proc E listening)

+->(routing to E)

       V

+-> (check resources from A to Agent 2: already allocated,

       V  reuse control link & HID, no additional resources needed)

+-> CONNECT E --------->+->+

           <RVLId=23><SVLId=5> |  V

<Ref=20> V (routing to E)

+<- ACK <---------------+ V

           <RVLId=5><SVLId=23>    +->(reserve resources 2 to E)
           <Ref=20>                  V

+-> CONNECT E --------->+

                                         <RVLId=0><SVLId=27> |
                                         <Ref=230><HID=4800> |

+<- HID-APPROVE <-------+

                                         <RVLId=27><SVLId=74>|
                                         <Ref=230><HID=4800> V

10. (proc E accepts) 11. (wait until HID negotiated)

                                                             V

12. +<-+<- ACCEPT E <----------+

                                  V  |   <RVLId=27><SVLId=74>

13. (wait for ACCEPTS) V <Ref=710><LnkRef=230> 14. V +-> ACK --------------->+ 15. (wait until HID negotiated)<-+ <RVLId=74><SVLId=27>

                               V         <Ref=710>

16. +<- ACCEPT E <-------+

          |   <RVLId=5><SVLId=23>
          V   <Ref=235><LnkRef=20>

17. +-> ACK ------------>+

          |   <RVLId=23><SVLId=5>
          V   <Ref=235>

18. +<-(inform A of E's FlowSpec)

       V

19. +<-(wait for ACCEPTS)

    V

20. +<-(wait until HID negotiated)

 V

21. (inform A open to E)

             Figure 12.  Addition of Another Target
     An ST agent that is already a node in the stream recognizes the
     RVLId and verifies that the Name of the stream is the same.  It
     then checks if the intersection of the TargetList and the
     targets of the established stream is empty.  If this is not the
     case, then the receiver responds with an ERROR-IN-REQUEST with
     the appropriate reason code (RouteLoop) that contains a
     TargetList of those targets that were duplicates;  see Section
     4.2.3.5 (page 106).
     For each new target in the TargetList, processing is much the
     same as for the original CONNECT;  see Sections 3.1.2-4 (pages
     19-20).  The CONNECT must be acknowledged, propagated, and
     network resources must be reserved.  However, it may be
     possible to route to the new targets using previously allocated
     paths or an existing multicast group.  In that case, additional
     resources do not need to be reserved but more next-hop(s) might
     have to be added to an existing multicast group.
     Nevertheless, the origin, or any intermediate ST agent that
     receives a CONNECT for an existing stream, can make a routing
     decision that is independent of any it may have made
     previously.  Depending on the routing algorithm that is used,
     the ST agent may decide to reach the new target by way of an
     established branch, or it may decide to create a new branch.
     The fact that a new target is being added to an existing stream
     may result in a suboptimal overall routing for certain routing
     algorithms.  We take this problem to be unavoidable since it is
     unlikely that the stream routing can be made optimal in
     general, and the only way to avoid this loss of optimality is
     to redefine the routing of potentially the entire stream, which
     would be too expensive and time consuming.
  3.3.2.        The Origin Removing a Target
     The application at the origin specifies a set of targets that
     are to be removed from the stream and an appropriate reason
     code (ApplDisconnect).  The targets are partitioned into
     multiple DISCONNECT messages based on the next-hop to the
     individual targets.  As with CONNECT messages, an ST agent that
     is sending a DISCONNECT must make sure that the message fits
     into the MTU for the intervening network.  If the message is
     too large, the TargetList must be further partitioned into
     multiple DISCONNECT messages.
     An ST agent that receives a DISCONNECT message must acknowledge
     it by sending an ACK back to the previous-hop.  The DISCONNECT
     must also be propagated to the relevant next-hop ST agents.
     Before propagating the message, however, the TargetList should
     be partitioned based on next-hop ST
     agent and MTU, as described above.  Note that there may be
     targets in the TargetList for which the ST agent has no
     information.  This may result from interacting DISCONNECT and
     REFUSE messages and should be logged and silently ignored.
     If, after deleting the specified targets, any next-hop has no
     remaining targets, then those resources associated with that
     next-hop agent may be released.  Note that network resources
     may not actually be released if network multicasting is being
     used since they may still be required for traffic to other
     next-hops in the multicast group.
  Application                                         Application
        Agent A             Agent 1  Agent 2          Agent B    C
 1.  (close B,C ApplDisconnect)
      V
 2.      +->+-+-> DISCONNECT B ----->+
 3.         | |   <RVLId=14><SVLId=4>+-+-> DISCONNECT B ------>+
         | |   <Ref=25>           | |   <RVLId=44><SVLId=15>|
         | V   <RC=ApplDisconnect>| |   <Ref=120>           |
 4.         | (free A to 1 resrc.)   | V   <RC=ApplDisconnect> |
 5.         |                        V (free 1 to B resrc.)    |
 6.         | +<- ACK <--------------+                         V
 7.         | |   <RVLId=4><SVLId=14>| +<- ACK <---------------+
         | V   <Ref=25>           | |   <RVLId=15><SVLId=44>|
 8.         | (free link 4)          V |   <Ref=120>           |
 9.         |           (free link 14) V                       |
 10.        |                          (free link 15)          V
 11.        |        (inform B that stream closed ApplDisconnect)
 12.        |                                     (free link 44)
         V
 13.     +<-+-+-> DISCONNECT C ---------->+
 14.     |    |   <RVLId=23><SVLId=5>     +-+-> DISCONNECT C ------>+
      |    |   <Ref=30>                | |   <RVLId=54><SVLId=25>|
      |    V   <RC=ApplDisconnect>     | |   <Ref=240>           |
 15.     |    (keep A to 2 resrc for      | V   <RC=ApplDisconnect> |
 16.     |         data going to D,E)     | (free 2 to C resrc.)    |
      |                                V                         |
 17.     |    +<- ACK <-------------------+                         V
 18.     |    |   <RVLId=5><SVLId=23>     | +<- ACK <---------------+
      |    V   <Ref=30>                | |   <RVLId=25><SVLId=54>|
 19.     |    (keep link 5 for D,E)       V |   <Ref=240>           |
 20.     |           (keep link 23 for D,E) V                       |
 21.     |                           (free link 25)                 V
 22.     |              (inform C that stream closed ApplDisconnect>)
 23.     V                                             (free link 54)
 24.     (inform A closed to B,C ApplDisconnect)
              Figure 13.  Origin Removing a Target
     When the DISCONNECT reaches a target, the target sends an ACK
     and notifies the application that it is no longer part of the
     stream and the reason.  The application should then inform ST
     to terminate the stream, and ST should delete the stream from
     its database after performing any necessary management and
     accounting functions.
  3.3.3.        A Target Deleting Itself
     The application at the target may inform ST that it wants to be
     removed from the stream and the appropriate reason code
     (ApplDisconnect).  The agent then forms a REFUSE message with
     itself as the only entry in the TargetList.  The REFUSE is sent
     back to the origin via the previous-hop.  If a stream has
     multiple targets and one target leaves the stream using this
     REFUSE mechanism, the stream to the other targets is not
     affected;  the stream continues to exist.
     An ST agent that receives such a REFUSE message must
     acknowledge it by sending an ACK to the next-hop.  The target
     is deleted and, if the next-hop has no remaining targets, then
     the those resources associated with that next-hop agent may be
     released.  Note that network resources may not actually be
     released if network multicasting is being used since they may
     still be required for traffic to other next-hops in the
     multicast group.  The REFUSE must also be propagated back to
     the previous-hop ST agent.
             Agent A          Agent 2          Agent E
        1.                             (close E ApplDisconnect)
                                                  V
        2.                         +<- REFUSE E --+
                                   |   <RVLId=27><SVLId=74>
                                   |   <Ref=720>
                                   V   <RC=ApplDisconnect>
        3.                      +<-+-> ACK ------>+
                                |  |   <RVLId=74><SVLId=27>
        4.                      V  V   <Ref=720>
        5.    +<-+<- REFUSE E --+  (prune allocations)
              |  |   <RVLId=5><SVLId=23>
              |  |   <Ref=245>
              |  V   <RC=ApplDisconnect>
        6.    |  +-> ACK ------>+
              |  |   <RVLId=23><SVLId=5>
              |  V   <Ref=245>
        7.    V  (prune allocations)
        8.    (inform application closed E ApplDisconnect)
               Figure 14.  Target Deleting Itself
     When the REFUSE reaches the origin, the origin sends an ACK and
     notifies the application that the target listed in the
     TargetList is no longer part of the stream.  If the stream has
     no remaining targets, the application may choose to terminate
     the stream.
  3.3.4.        Changing the FlowSpec
     An application may wish to change the FlowSpec of an
     established stream.  To do so, it informs ST of the new
     FlowSpec and the list of targets that are to be changed.  The
     origin ST agent then issues one or more CHANGE messages with
     the new FlowSpec and sends them to the relevant next-hop
     agents.  CHANGE messages are structured and processed similarly
     to CONNECT messages.  A next-hop agent that is an intermediate
     agent and receives a CHANGE message similarly determines if it
     can implement the new FlowSpec along the hop to each of its
     next-hop agents, and if so, it propagates the CHANGE messages
     along the established paths.  If this process succeeds, the
     CHANGE messages will eventually reach the targets, which will
     each respond with an ACCEPT message that is propagated back to
     the origin.
     Note that since a CHANGE may be sent containing a FlowSpec with
     a range of permissible values for bandwidth, delay, and/or
     error rate, and the actual values returned in the ACCEPTs may
     differ, then another CHANGE may be required to release excess
     resources along some of the paths.

3.4. Stream Tear Down

  A stream is usually terminated by the origin when it has no
  further data to send, but may also be partially torn down by the
  individual targets.  These cases will not be further discussed
  since they have already been described in Sections 3.3.2-3 (pages
  33-35).
  A stream is also torn down if the application should terminate
  abnormally.  Processing in this case is identical to the previous
  descriptions except that the appropriate reason code is different
  (ApplAbort).
  When all targets have left a stream, the origin notifies the
  application of that fact, and the application then is responsible
  for terminating the stream.  Note, however, that the application
  may decide to add a target(s) to the stream instead of terminating
  it.

3.5. Exceptional Cases

  The previous descriptions covered the simple cases where
  everything worked.  We now discuss what happens when things do not
  succeed.  Included are situations where messages are lost, the
  requested resources are not available, the routing fails or is
  inconsistent.
  In order for the ST Control Message Protocol to be reliable over
  an unreliable internetwork, the problems of corruption,
  duplication, loss, and ordering must be addressed.  Corruption is
  handled through use of checksumming, as described in Section 4
  (page 76).  Duplication of control messages is detected by
  assigning a transaction number (Reference) to each control
  message;  duplicates are discarded.  Loss is detected using a
  timeout at the sender;  messages that are not acknowledged before
  the timeout expires are retransmitted;  see Section 3.7.6 (page
  66).  If a message is not acknowledged after a few retransmissions
  a fault is reported.  The protocol does not have significant
  ordering constraints.  However, minor sequencing of control
  messages for a stream is facilitated by the requirement that the
  Reference numbers be monotonically increasing;  see Section 4.2
  (page 78).
  3.5.1.        Setup Failure due to CONNECT Timeout
     If a response (an ERROR-IN-REQUEST, an ACK, a HID-REJECT, or a
     HID-APPROVE) has not been received within time ToConnect, the
     ST agent should retransmit the CONNECT message.  If no response
     has been received within NConnect retransmissions, then a fault
     occurs and a REFUSE message with the appropriate reason code
     (RetransTimeout) is sent back in the direction of the origin,
     and, in place of the CONNECT, a DISCONNECT is sent to the
     next-hop (in case the response to the CONNECT is the message
     that was lost).  The agent will expect an ACK for both the
     REFUSE and the DISCONNECT messages.  If it does not receive an
     ACK after retransmission time ToRefuse and ToDisconnect
     respectively, it will resend the REFUSE/DISCONNECT message.  If
     it does not receive ACKs after sending NRefuse/ NDisconnect
     consecutive REFUSE/DISCONNECT messages, then it simply gives up
     trying.
      Sending Agent              Receiving Agent
1.   ->+----> CONNECT X ------>//// (message lost or garbled)
       |      <RVLId=0><SVLId=99>
       V      <Ref=1278><HID=1234>
2. (timeout)
       V
3.     +----> CONNECT X ------------>+
4.     |      <RVLId=0><SVLId=99>    +----> CONNECT X ----------->+
       |      <Ref=1278><HID=1234>   V      <RVLId=0><SVLId=1010> |
5.     | //<- HID-APPROVE <----------+      <Ref=6666><HID=6666>  V
6.     |      <RVLId=99><SVLId=88>      +<- HID-APPROVE <---------+
       V      <Ref=1278><HID=1234>          <RVLId=1010><SVLId=1111>
7. (timeout)                                <Ref=6666><HID=6666>
       V
8.     +----> CONNECT X ------------>+
              <RVLId=0><SVLId=99>    |
              <Ref=1278><HID=1234>   V
9.     +<-+<- HID-APPROVE <----------+
       |      <RVLId=99><SVLId=88>
       V      <Ref=1278><HID=1234>
 (cancel timer)
       Figure 15.  CONNECT Retransmission after a Timeout
  3.5.2.        Problems due to Routing Inconsistency
     When an intermediate agent receives a CONNECT, it selects the
     next-hop agents based on the TargetList and the networks to
     which it is connected.  If the resulting next-hop to any of the
     targets is across the same network from which it received the
     CONNECT (but not the previous-hop itself), there may be a
     routing problem.  However, the routing algorithm at the
     previous-hop may be optimizing differently than the local
     algorithm would in the same situation.  Since the local ST
     agent cannot distinguish the two cases, it should permit the
     setup but send back to the previous-hop agent an informative
     NOTIFY message with the appropriate reason code (RouteBack),
     pertinent TargetList, and in the NextHopIPAddress element the
     address of the next-hop ST agent returned by its routing
     algorithm.
     The agent that receives such a NOTIFY should ACK it.  If the
     agent is using an algorithm that would produce such behavior,
     no further action is taken;  if not, the agent should send a
     DISCONNECT to the next-hop agent to correct the problem.
     Alternatively, if the next-hop returned by the routing function
     is in fact the previous-hop, a routing inconsistency has been
     detected.  In this case, a REFUSE is sent back to
     the previous-hop agent containing an appropriate reason code
     (RouteInconsist), pertinent TargetList, and in the
     NextHopIPAddress element the address of the previous-hop.  When
     the previous-hop receives the REFUSE, it will recompute the
     next-hop for the affected targets.  If there is a difference in
     the routing databases in the two agents, they may exchange
     CONNECT and REFUSE messages again.  Since such routing errors
     in the internet are assumed to be temporary, the situation
     should eventually stabilize.
  3.5.3.        Setup Failure due to a Routing Failure
     It is possible for an agent to receive a CONNECT message that
     contains a known Name, but from an agent other than the
     previous-hop agent of the stream with that Name.  This may be:
      1  that two branches of the tree forming the stream have
         joined back together,
      2  a deliberate source routing loop,
      3  the result of an attempted recovery of a partially
         failed stream, or
      4  an erroneous routing loop.
     The TargetList is used to distinguish the cases 1 and 2 (see
     also Section 4.2.3.5 (page 107)) by comparing each newly
     received target with those of the previously existing stream:
      o  if the IP address of the targets differ, it is case 1;
      o  if the IP address of the targets match but the source
         route(s) are different, it is case 2;
      o  if the target (including any source route) matches a
         target (including any source route) in the existing
         stream, it may be case 3 or 4.
     It is expected that the joining of branches will become more
     common as routing decisions are based on policy issues and not
     just simple connectivity.  Unfortunately, there is no good way
     to merge the two parts of the stream back into a single stream.
     They must be treated independently with respect to processing
     in the agent.  In particular, a separate state machine is
     required, the Virtual Link Identifiers and HIDs from the
     previous-hops and to the next-hops must be different, and
     duplicate resources must be reserved in both the agent and in
     any next-hop networks.  Processing is the same for a deliberate
     source routing loop.
     The remaining cases requiring recovery, a partially failed
     stream and an erroneous routing loop, are not easily
     distinguishable.  In attempting recovery of a failed stream, an
     agent may issue new CONNECT messages to the affected targets;
     for a full explanation see also Section 3.7.2 (page 51),
     Failure Recovery.  Such a CONNECT may reach an agent downstream
     of the failure before that agent has received a DISCONNECT from
     the neighborhood of the failure.  Until that agent receives the
     DISCONNECT, it cannot distinguish between a failure recovery
     and an erroneous routing loop.  That agent must therefore
     respond to the CONNECT with a REFUSE message with the affected
     targets specified in the TargetList and an appropriate reason
     code (StreamExists).
     The agent immediately preceding that point, i.e., the latest
     agent to send the CONNECT message, will receive the REFUSE
     message.  It must release any resources reserved exclusively
     for traffic to the listed targets.  If this agent was not the
     one attempting the stream recovery, then it cannot distinguish
     between a failure recovery and an erroneous routing loop.  It
     should repeat the CONNECT after a ToConnect timeout.  If after
     NConnect retransmissions it continues to receive REFUSE
     messages, it should propagate the REFUSE message toward the
     origin, with the TargetList that specifies the affected
     targets, but with a different error code (RouteLoop).
     The REFUSE message with this error code (RouteLoop) is
     propagated by each ST agent without retransmitting any CONNECT
     messages.  At each agent, it causes any resources reserved
     exclusively for the listed targets to be released.  The REFUSE
     will be propagated to the origin in the case of an erroneous
     routing loop.  In the case of stream recovery, it will be
     propagated to the ST agent that is attempting the recovery,
     which may be an intermediate agent or the origin itself.  In
     the case of a stream recovery, the agent attempting the
     recovery may issue new CONNECT messages to the same or to
     different next-hops.
     If an agent receives both a REFUSE message and a DISCONNECT
     message with a target in common then it can release the
     relevant resources and propagate neither the REFUSE nor the
     DISCONNECT (however, we feel that it is unlikely that most
     implementations will be able to detect this situation).
     If the origin receives such a REFUSE message, it should attempt
     to send a new CONNECT to all the affected targets.  Since
     routing errors in an internet are assumed to be temporary, the
     new CONNECTs will eventually find acceptable routes to the
     targets, if one exists.  If no further routes exist after
     NRetryRoute tries, the application should be
     informed so that it may take whatever action it deems
     necessary.
  3.5.4.        Problems in Reserving Resources
     If the network or ST agent resources are not available, an ST
     agent may preempt one or more streams that have lower
     precedence than the one being created.  When it breaks a lower
     precedence stream, it must issue REFUSE and DISCONNECT messages
     as described in Sections 4.2.3.15 (page 122) and 4.2.3.6 (page
     110).  If there are no streams of lower precedence, or if
     preempting them would not provide sufficient resources, then
     the stream cannot be accepted by the ST agent.
     If an intermediate agent detects that it cannot allocate the
     necessary resources, then it sends a REFUSE that contains an
     appropriate reason code (CantGetResrc) and the pertinent
     TargetList to the previous-hop ST agent.  For further study are
     issues of reporting what resources are available, whether the
     resource shortage is permanent or transitory, and in the latter
     case, an estimate of how long before the requested resources
     might be available.
  3.5.5.        Setup Failure due to ACCEPT Timeout
     An ST agent that propagates an ACCEPT message backward toward
     the origin expects an ACK from the previous-hop.  If it does
     not receive an ACK within a timeout, called ToAccept, it will
     retransmit the ACCEPT.  If it does not receive an ACK after
     sending a number, called NAccept, of ACCEPT messages, then it
     will replace the ACCEPT with a REFUSE, and will send a
     DISCONNECT in the direction toward the target.  Both the REFUSE
     and DISCONNECT will identify the affected target(s) and specify
     an appropriate reason code (AcceptTimeout).  Both are also
     retransmitted until ACKed with timeout ToRefuse/ ToDisconnect
     and retransmit count NRefuse/NDisconnect.  If they are not
     ACKed, the agent simply gives up, letting the failure detection
     mechanism described in Section 3.7.1 (page 48) take care of any
     cleanup.
  3.5.6.        Problems Caused by CHANGE Messages
     An application must exercise care when changing a FlowSpec to
     prevent a failure.  A CHANGE might fail for two reasons.  The
     request may be for a larger amount of network resources when
     those resources are not available;  this failure may be
     prevented by requiring that the current level of service be
     contained within the ranges of the FlowSpec in the CHANGE.
     Alternatively, the local network might require all the former
     resources to be released before the new ones are requested and,
     due to unlucky timing, an unrelated request for network
     resources might be processed between the time the resources are
     released and the time the new resources are requested, so that
     the former resources are no longer available.  There is not
     much that an application or ST can do to prevent such failures.
     If the attempt to change the FlowSpec fails then the ST agent
     where the failure occurs must intentionally break the stream
     and invoke the stream recovery mechanism using REFUSE and
     DISCONNECT messages;  see Section 3.7.2 (page 51).  Note that
     the reserved resources after the failure of a CHANGE may not be
     the same as before, i.e., the CHANGE may have been partially
     completed.  The application is responsible for any cleanup
     (another CHANGE).
  3.5.7.        Notification of Changes Forced by Failures
     NOTIFY is issued by a an ST Agent to inform upsteam agents and
     the origin that resource allocation changes have occurred after
     a stream was established.  These changes occur when network
     components fail and when competing streams preempt resources
     previously reserved by a lower precedence stream.  We also
     anticipate that NOTIFY can be used in the future when
     additional resources become available, as is the case when
     network components recover or when higher precedence streams
     are deleted.
     NOTIFY is also used to inform upstream agents that a routing
     anomaly has occurred.  Such an example was cited in Section
     3.5.2 (page 38), where an agent notices that the next-hop agent
     is on the same network as the previous-hop agent;  the anomaly
     is that the previous-hop should have connected directly to the
     next-hop without using an intermediate agent.  Delays in
     propagating host status and routing information can cause such
     anomalies to occur.  NOTIFY allows ST to correct automatically
     such mistakes.
     NOTIFY reports a FlowSpec that reflects that revised guarantee
     that can be promised to the stream.  NOTIFY also
     identifies those targets affected by the change.  In this way,
     NOTIFY is similar to ACCEPT.  NOTIFY includes a ReasonCode to
     identify the event that triggered the notification.  It also
     includes a TargetList, rather than a single Target, since a
     single event can affect a branch leading to several targets.
     NOTIFY is relayed by the ST agents back toward the origin,
     along the path established by the CONNECT but in the reverse
     direction.  NOTIFY must be acknowledged with an ACK at each
     hop.  If intermediate agent corrects the situation without
     causing any disruption to the data flow or guarantees, it can
     choose to drop the notification message before it reaches the
     origin.  If the originating agent receives a NOTIFY, it is then
     expected to adjust its own processing and data rates, and to
     submit any required CHANGE requests.  As with ACCEPT, the
     FlowSpec is not modified on this trip from the target back to
     the origin.  It is up to the origin to decide whether a CHANGE
     should be submitted.  (However, even though the FlowSpec has
     not been modified, the situation reported in the

Application Agent A Agent 1 Agent B

1.                      (high precedence request preempts 10K of
                         the stream's original 30Kb bandwidth
                          allocated to the hop from 1 to B)
                                  |
                                  V
2.   +<------+-- NOTIFY -------------+
  |       |   <RVLId=4><SVLId=14>
  |       |   <Ref=150>
  |       V   <FlowSpec=20Kb,...><TargList=B>
3.   |       +-> ACK --------------->+
  |           <RVLId=14><SVLId=4>
  V           <Ref=150>
4. (inform application)
  ....
5. change(FlowSpec=20Kb,...)
  V
6.   +---------> CHANGE B ---------->+
7.               <RVLId=14><SVLId=4> +--> CHANGE B ------------>+->+
              <Ref=60>            |    <RVLId=44><SVLId=15>  |  |
              <FlowSpec=20Kb,...> V    <Ref=160>             |  |
8.           +<- ACK ----------------+    <FlowSpec=20Kb,...>   |  |
              <RVLId=4><SVLId=14>                            V  |
9.               <Ref=60>            +--- ACK ------------------+  |
                                         <RVLId=15><SVLId=44>   |
                                         <Ref=160>              V
          ... perform normal ACCEPT processing ...        <-----+
             Figure 16.  Processing NOTIFY Messages
     notify may have prevented the ST agents from meeting the
     original guarantees.)

3.6. Options

  Several options are defined in the CONNECT message.  The special
  processing required to support each will be described in the
  following sections.  The options are independent, i.e., can be set
  to one (1, TRUE) or zero (0, FALSE) in any combination.  However,
  the effect and implementation of the options is NOT necessarily
  independent, and not all combinations are supported.
  3.6.1.        HID Field Option
     The sender of a CONNECT message may or not specify an HID in
     the HID field.  If the HID Field option of the CONNECT message
     is not set (the H bit is 0), then the HID field does not
     contain relevant information and should be ignored.
     If this option is set (the H bit is 1), then the HID field
     contains a relevant value.  If this option is set and the HID
     field of the CONNECT contains a non-zero value, that value
     represents a proposed HID that initiates the HID negotiation.
     If the HID Field option is set but the HID field of the CONNECT
     message contains a zero, this means that the sender of that
     CONNECT message has chosen to defer selection of the HID to the
     next-hop agent (the receiver of a CONNECT message).  This
     choice can allow a more efficient mechanism for selecting HIDs
     and possibly a more efficient mechanism for forwarding data
     packets in the case when the previous-hop does not need to
     select the HID;  see also Section 4.2.3.5 (page 105).
     Upon receipt of a CONNECT message with the HID Field option set
     and the HID field set to zero, a next-hop agent selects the HID
     for the hop, enters it into its appropriate data structure, and
     returns it in the HID field of the HID-APPROVE message.  The
     previous-hop takes the HID from the HID-APPROVE message and
     enters it into its appropriate data structure.
  3.6.2.        PTP Option
     The PTP option (Point-to-Point) is used to indicate that the
     stream will never have more than a single target.  It
     consequently implies that the stream will never need to support
     any form of multicasting.  Use of the PTP option may thus allow
     efficiencies in the way the stream is built or is
     managed.  Specifically, the ST agents do not need to request
     that the intervening networks allocate multicast groups to
     support this stream.
     The PTP option can only be set to one (1) by the origin, and
     must be the same for the entire stream (i.e., propagated by ST
     agents).  The details of what this option does are
     implementation specific, and do not affect the protocol very
     much.
     If the application attempts to add a new target to an existing
     stream that was created with the PTP option set to one (1), the
     application should be informed of the error with an ERROR-IN-
     REQUEST message with the appropriate reason code.  If a CONNECT
     is received whose TargetList contains more than a single entry,
     an ERROR-IN-REQUEST message with the appropriate reason code
     (PTPError) should be returned to the previous-hop agent (note
     that such a CONNECT should never be received if the origin both
     implements the PTP option and is functioning properly).
     As implied in the last paragraph, a subsetted implementation
     might choose not to implement the PTP option.
  3.6.3.        FDx Option
     The FDx option is used to indicate that a second stream in the
     reverse direction, from the target to the origin, should
     automatically be created.  This option is most likely to be
     used when the TargetList has only a single entry.  If used when
     the TargetList has multiple entries, the resulting streams
     would allow bi-directional communication between the origin and
     the various targets, but not among the targets.  The FDx option
     can only be invoked by the origin, and must be propagated by
     intermediate agents.
     This option is specified by inclusion of both an RFlowSpec and
     an RHID parameter in the CONNECT message (possibly with an
     optional RGroup parameter).
     Any ST agent that receives a CONNECT message with both an
     RFlowSpec and an RHID parameter will create database entries
     for streams in both directions and will allocate resources in
     both directions for them.  By this we mean that an ST agent
     will reserve resources to the next-hop agent for the normal
     stream and resources back to the previous-hop agent for the
     reverse stream.  This is necessary since it is expected that
     network reservation interfaces will require the destination
     address(es) in order to make reservations, and because all ST
     agents must use the same reservation model.
     The target agent will select a Name for the reverse stream and
     return it (in the RName parameter) and the resulting FlowSpec
     (in the RFlowSpec parameter) of the ACCEPT message.  Each agent
     that processes the ACCEPT will update its partial stream
     database entry for the reverse stream with the Name contained
     in the RName parameter.  We assume that the next higher
     protocol layer will use the same SAP for both streams.
  3.6.4.        NoRecovery Option
     The NoRecovery option is used to indicate that ST agents should
     not attempt recovery in case of network or component failure.
     If a failure occurs, the origin will be notified via a REFUSE
     message and the target(s) via a DISCONNECT, with an appropriate
     reason code of "failure" (i.e., one of DropFailAgt,
     DropFailHst, DropFailIfc, DropFailNet, IntfcFailure,
     NetworkFailure, STAgentFailure, FailureRecovery).  They can
     then decide whether to wait for the failed component to be
     fixed, or drop the target via DISCONNECT/REFUSE messages.  The
     NoRecovery option can only be set to one (1) by the origin, and
     must be the same for the entire stream.
  3.6.5.        RevChrg Option
     The RevChrg option bit in the FlowSpec is set to one (1) by the
     origin to request that the target(s) pay any charges associated
     with the stream (to the target(s));  see Section 4.2.2.3 (page
     83).  If the target is not willing to accept charges, the bit
     should be set to zero (0) by the target before returning the
     FlowSpec to the origin in an ACCEPT message.
     If the FDx option is also specified, the target pays charges
     for both streams.
  3.6.6.        Source Route Option
     The Source Route Option may be used both for diagnostic
     purposes, and, in those hopefully infrequent cases where the
     standard routing mechanisms do not produce paths that satisfy
     some policy constraint, to allow the origin to prespecify the
     ST agents along the path to the target(s).  The idea is that
     the origin can explicitly specify the path to a target, either
     strictly hop-by-hop or more loosely by specification of one or
     more agents through which the path must pass.
     The option is specified by including source routing information
     in the Target structure.  A target may contain zero or more
     SrcRoute options;  when multiple options are present, they are
     processed in the order in which they occur.  The parameter code
     indicates whether the portion of the path contained in the
     parameter is of the strict or loose variety.
     Since portions of a path may pass through portions of an
     internet that does not support ST agents, there are also forms
     of the SrcRoute option that are converted into the

Application Agent A Agent 2 Agent 3 Agent B

(open B<SR=2,3>)

V (proc B listening)

(source routed to 2)

  V

(check resources from A to Agent 2: already allocated,

  V   reuse control link & HID, no additional resources needed)

+-> CONNECT B<SR=2,3>->-+-+

      <RVLId=23><SVLId=5> | |

<Ref=50> V |

+<- ACK ----------------+ |

      <RVLId=5><SVLId=23>   |
      <Ref=50>              V

(source routed to 3)

                         V

(reserve resources 2 to 3)

                      V

10. +-> CONNECT B<SR=3> ---->+

                          <RVLId=0><SVLId=24>  |
                          <Ref=280><HID=4801>  V

11. +<- HID-APPROVE <--------+

                          <RVLId=24><SVLId=33> |
                          <Ref=280><HID=4801>  |
                                               V
                                       (routing to B)
                                            V
                             (reserve resources from 3 to B)
                                         V

12. +-> CONNECT B ---------->+

                                             <RVLId=0><SVLId=32>  |
                                             <Ref=330><HID=6000>  V

13. +<- HID-APPROVE <--------+

                                             <RVLId=32><SVLId=45> |
                                             <Ref=330><HID=6000>  V

14. (proc B accepts)

                                                                  V
            ... perform normal ACCEPT processing ...        <-----+
                Figure 17.  Source Routing Option
     corresponding IP Source Routing options by the ST agent that
     performs the encapsulation.
     The SrcRoute option is usually selected by the origin, but may
     be used by intermediate agents if specified as a result of the
     routing function.
     For example, in the topology of Figure 2, if A wants to add B
     back into the stream, its routing function might decide that
     the best path is via Agent 3.  Since the data is already being
     multicast across the network connected to C, D, and E, the
     route via Agent 3 might cost less than having A replicate the
     data packets and send them across A's network a second time.

3.7. Ancillary Functions

  There are several functions and procedures that are required by
  the ST Protocol.  They are described in subsequent sections.
  3.7.1.        Failure Detection
     The ST failure detection mechanism is based on two assumptions:
      1  If a neighbor of an ST agent is up, and has been up
         without a disruption, and has not notified the ST agent
         of a problem with streams that pass through both, then
         the ST agent can assume that there has not been any
         problem with those streams.
      2  A network through which an ST agent has routed a stream
         will notify the ST agent if there is a problem that
         affects the stream data packets but does not affect the
         control packets.
     The purpose of the robustness protocol defined here is for ST
     agents to determine that the streams through a neighbor have
     been broken by the failure of the neighbor or the intervening
     network.  This protocol should detect the overwhelming majority
     of failures that can occur.  Once a failure is detected,
     recovery procedures are initiated.
     3.7.1.1.         Network Failures
        In this memo, a network is defined to be the protocol
        layer(s) below ST.  This function can be implemented in a
        hardware module separate from the ST agent, or as software
        modules within the ST agent itself, or as a combination of
        both.  This specification and the robustness protocol do not
        differentiate between these alternatives.
        An ST agent can detect network failures by two mechanisms;
        the network can report a failure, or the ST agent can
        discover a failure by itself.  They differ in the amount of
        information that ST agent has available to it in order to
        make a recovery decision.  For example, a network may be
        able to report that reserved bandwidth has been lost and the
        reason for the loss and may also report that connectivity to
        the neighboring ST agent remains intact.  In this case, the
        ST agent may request the network to allocate bandwidth anew.
        On the other hand, an ST agent may discover that
        communication with a neighboring ST agent has ceased because
        it has not received any traffic from that neighbor in some
        time period.  If an ST agent detects a failure, it may not
        be able to determine if the failure was in the network while
        the neighbor remains available, or the neighbor has failed
        while the network remains intact.
     3.7.1.2.         Detecting ST Stream Failures
        Each ST agent periodically sends each neighbor with which it
        shares a stream a HELLO message.  A HELLO message is ACKed
        if the Reference field is non-zero.  This message exchange
        is between ST agents, not entities representing streams or
        applications (there is no Name field in a HELLO message).
        That is, an ST agent need only send a single HELLO message
        to a neighbor regardless of the number of streams that flow
        between them.  All ST agents (host as well as intermediate)
        must participate in this exchange.  However, only agents
        that share active streams need to participate in this
        exchange.
        To facilitate processing of HELLO messages, an
        implementation may either create a separate Virtual Link
        Identifier for each neighbor having an active stream, or may
        use the reserved identifier of one (1) for the SVLId field
        in all its HELLO messages.
        An implementation that wishes to send its HELLO messages via
        a data path instead of the control path may setup a separate
        stream to its neighbor agent for that purpose.  The HELLO
        message would contain a HID of zero, indicating a control
        message, but would be identified to the next lower protocol
        layer as being part of the separate stream.
        As well as identifying the sender, the HELLO message has two
        fields;  a HelloTimer field that is in units of milliseconds
        modulo the maximum for the field size, and a
        Restarted bit specifying that the ST agent has been
        restarted recently.  The HelloTimer must appear to be
        incremented every millisecond whether a HELLO message is
        sent or not, but it is allowable for an ST agent to create a
        new HelloTimer only when it sends a HELLO message.  The
        HelloTimer wraps around to zero after reaching the maximum
        value.  Whenever an ST agent suffers a catastrophic event
        that may result in it losing ST state information, it must
        reset its HelloTimer to zero and must set the Restarted bit
        for the following HelloTimerHoldDown seconds.
        An ST agent must send HELLO messages to its neighbor with a
        period shorter than the smallest RecoveryTimeout parameter
        of the FlowSpecs of all the active streams that pass between
        the two agents, regardless of direction.  This period must
        be smaller by a factor, called HelloLossFactor, which is at
        least as large as the greatest number of consecutive HELLO
        messages that could credibly be lost while the communication
        between the two ST agents is still viable.
        An ST agent may send simultaneous HELLO messages to all its
        neighbors at the rate necessary to support the smallest
        RecoveryTimeout of any active stream.  Alternately, it may
        send HELLO messages to different neighbors independently at
        different rates corresponding to RecoveryTimeouts of
        individual streams.
        The agent that receives a HELLO message expects to receive
        at least one new HELLO message from a neighbor during the
        RecoveryTimeout of every active stream through that
        neighbor.  It can detect duplicate or delayed HELLO messages
        by saving the HelloTimer field of the most recent valid
        HELLO message from that neighbor and comparing it with the
        HelloTimer field of incoming HELLO messages.  It will only
        accept an incoming HELLO message from that neighbor if it
        has a HelloTimer field that is greater than the most recent
        valid HELLO message by the time elapsed since that message
        was received plus twice the maximum likely delay variance
        from that neighbor.  If the ST agent does not receive a
        valid HELLO message within the RecoveryTimeout of a stream,
        it must assume that the neighboring ST agent or the
        communication link between the two has failed and it must
        initiate stream recovery activity.
        Furthermore, if an ST agent receives a HELLO message that
        contains the Restarted bit set, it must assume that the
        sending ST agent has lost its ST state.  If it shares
        streams with that neighbor, it must initiate stream recovery
        activity.  If it does not share streams with that neighbor,
        it should not attempt to create one until that
        bit is no longer set.  If an ST agent receives a CONNECT
        message from a neighbor whose Restarted bit is still set, it
        must respond with ERROR-IN-REQUEST with the appropriate
        reason code (RemoteRestart).  If it receives a CONNECT
        message while its own Restarted bit is set, it must respond
        with ERROR-IN-REQUEST with the appropriate reason code
        (RestartLocal).
     3.7.1.3.         Subset
        This failure detection mechanism subsets by reducing the
        complexity of the timing and decisions.  A subsetted ST
        agent sends HELLO messages to all its ST neighbors
        regardless of whether there is an active ST stream between
        them or not.  The RecoveryTimeout parameter of the FlowSpec
        is ignored and is assumed to be the DefaultRecoveryTimeout.
        Note that this implies that a REFUSE should be sent for all
        CONNECT or CHANGE messages whose RecoveryTimeout is less
        than DefaultRecoveryTimeout.  An ST agent will accept an
        incoming HELLO message if it has a HelloTimer field that is
        greater than the most recent valid HELLO message by
        DefaultHelloFactor times the time elapsed since that message
        was received.
  3.7.2.        Failure Recovery
     Streams can fail from various causes;  an ST agent can break, a
     network can break, or an ST agent can intentionally break a
     stream in order to give the stream's resources to a higher
     precedence stream.  We can envision several approaches to
     recovery of broken streams, and we consider the one described
     here the simplest and therefore the most likely to be
     implemented and work.
     If an intermediate agent fails or a network or part of a
     network fails, the previous-hop agent and the various next-hop
     agents will discover the fact by the failure detection
     mechanism described in Section 3.7.1 (page 48).  An ST agent
     that intentionally breaks a stream obviously knows of the
     event.
     The recovery of an ST stream is a relatively complex and time
     consuming effort because it is designed in a general manner to
     operate across a large number of networks with diverse
     characteristics.  Therefore, it may require information to be
     distributed widely, and may require relatively long timers.  On
     the other hand, since a network is a homogeneous system,
     failure recovery in the network may be a relatively faster and
     simpler operation.  Therefore an ST agent that detects a
     failure should attempt to fix the network failure before
     attempting recovery of the ST stream.  If the stream that
     existed between two ST agents before the failure cannot be
     reconstructed by network recovery mechanisms alone, then the ST
     stream recovery mechanism must be invoked.
     If stream recovery is necessary, the different ST agents may
     need to perform different functions, depending on their
     relation to the failure.
     An intermediate agent that breaks the stream intentionally
     sends DISCONNECT messages with the appropriate reason code
     (StreamPreempted) toward the affected targets.  If the
     NoRecovery option is selected, it sends a REFUSE message with
     the appropriate reason code(StreamPreempted) toward the origin.
     If the NoRecovery option is not selected, then this agent
     attempts recovery of the stream, as described below.
     A host agent that is a target of the broken stream or is itself
     the next-hop of the failed component should release resources
     that are allocated to the stream, but should maintain the
     internal state information describing the stream.  It should
     inform any next higher protocol of the failure.  It is
     appropriate for that protocol to expect that the stream will be
     fixed shortly by some alternate path and so maintain, for some
     time period, whatever information in the ST layer, the next
     higher layer, and the application is necessary to reactivate
     quickly entries for the stream as the alternate path develops.
     The agent should use a timeout to delete all the stream
     information in case the stream cannot be fixed in a reasonable
     time.
     An intermediate agent that is a next-hop of a failure that was
     not due to a preemption should first verify that there was a
     failure.  It can do this using STATUS messages to query its
     upstream neighbor.  If it cannot communicate with that
     neighbor, then it should first send a REFUSE message with the
     appropriate reason code of "failure" to the neighbor to speed
     up the failure recovery in case the hop is unidirectional,
     i.e., the neighbor can hear the agent but the agent cannot hear
     the neighbor.  The ST agent detecting the failure must then
     send DISCONNECT messages with the same reason code toward the
     targets.  The intermediate agents process this DISCONNECT
     message just like the DISCONNECT that tears down the stream.
     However, a target ST agent that receives a DISCONNECT message
     with the appropriate reason code (StreamPreempted, or
     "failure") will maintain the stream state and notify the next
     higher protocol of the failure.  In effect, these DISCONNECT
     messages tear down the stream from the point of the failure to
     the targets, but inform the targets that the stream may be
     fixed shortly.
     An ST agent that is the previous-hop before the failed
     component first verifies that there was a failure by querying
     the downstream neighbor using STATUS messages.  If the neighbor
     has lost its state but is available, then the ST agent may
     reconstruct the stream if the NoRecovery option is not
     selected, as described below.  If it cannot communicate with
     the next-hop, then the agent detecting the failure releases any
     resources that are dedicated exclusively to sending data on the
     broken branch and sends a DISCONNECT message with the
     appropriate reason code ("failure") toward the affected
     targets.  It does so to speed up failure recovery in case the
     communication may be unidirectional and this message might be
     delivered successfully.
     If the NoRecovery option is selected, then the ST agent that
     detects the failure sends a REFUSE message with the appropriate
     reason code ("failure") to the previous-hop.  If it is breaking
     the stream intentionally, it sends a REFUSE message with the
     appropriate reason code (StreamPreempted) to the previous-hop.
     The TargetList in these messages contains all the targets that
     were reached through the broken branch.  Multiple REFUSE
     messages may be required if the PDU is too long for the MTU of
     the intervening network.  The REFUSE message is propagated all
     the way to the origin, which can attempt recovery of the stream
     by sending a new CONNECT to the affected targets.  The new
     CONNECT will be treated by intermediate ST agents as an
     addition of new targets into the established stream.
     If the NoRecovery option is not selected, the ST agent that
     breaks the stream intentionally or is the previous-hop before
     the failed component can attempt recovery of the stream.  It
     does so by issuing a new CONNECT message to the affected
     targets.  If the ST agent cannot find new routes to some
     targets, or if the only route to some targets is through the
     previous-hop, then it sends one or more REFUSE messages to the
     previous-hop with the appropriate reason code ("failure" or
     StreamPreempted) specifying the affected targets in the
     TargetList.  The previous-hop can then attempt recovery of the
     stream by issuing a CONNECT to those targets.  If it cannot
     find an appropriate route, it will propagate the REFUSE message
     toward the origin.
     Regardless of which agent attempts recovery of a damaged
     stream, it will issue one or more CONNECT messages to the
     affected targets.  These CONNECT messages are treated by
     intermediate ST agents as additions of new targets into the
     established stream.  The FlowSpecs of the new CONNECT messages
     should be the same as the ones contained in the most recent
     CONNECT or CHANGE messages that the ST agent had sent toward
     the affected targets when the stream was operational.
     The reconstruction of a broken stream may not proceed smoothly.
     Since there may be some delay while the information concerning
     the failure is propagated throughout an internet, routing
     errors may occur for some time after a failure.  As a result,
     the ST agent attempting the recovery may receive REFUSE or
     ERROR-IN-REQUEST messages for the new CONNECTs that are caused
     by internet routing errors.  The ST agent attempting the
     recovery should be prepared to resend CONNECTs before it
     succeeds in reconstructing the stream.  If the failure
     partitions the internet and a new set of routes cannot be found
     to the targets, the REFUSE messages will eventually be
     propagated to the origin, which can then inform the application
     so it can decide whether to terminate or to continue to attempt
     recovery of the stream.
     The new CONNECT may at some point reach an ST agent downstream
     of the failure before the DISCONNECT does.  In this case, the
     agent that receives the CONNECT is not yet aware that the
     stream has suffered a failure, and will interpret the new
     CONNECT as resulting from a routing failure.  It will respond
     with an ERROR-IN-REQUEST message with the appropriate reason
     code (StreamExists).  Since the timeout that the ST agents
     immediately preceding the failure and immediately following the
     failure are approximately the same, it is very likely that the
     remnants of the broken stream will soon be torn down by a
     DISCONNECT message with the appropriate reason code
     ("failure").  Therefore, the ST agent that receives the ERROR-
     IN-REQUEST message with reason code (StreamExists) should
     retransmit the CONNECT message after the ToConnect timeout
     expires.  If this fails again, the request will be retried for
     NConnect times.  Only if it still fails will the ST agent send
     a REFUSE message with the appropriate reason code (RouteLoop)
     to its previous-hop.  This message will be propagated back to
     the ST agent that is attempting recovery of the damaged stream.
     That ST agent can issue a new CONNECT message if it so chooses.
     The REFUSE is matched to a CONNECT message created by a
     recovery operation through the LnkReference field in the
     CONNECT.
     ST agents that have propagated a CONNECT message and have
     received a REFUSE message should maintain this information for
     some period of time.  If an agent receives a second CONNECT
     message for a target that recently resulted in a REFUSE, that
     agent may respond with a REFUSE immediately rather than
     attempting to propagate the CONNECT.  This has the effect of
     pruning the tree that is formed by the propagation of CONNECT
     messages to a target that is not reachable by the routes that
     are selected first.  The tree will pass through any given ST
     agent only once, and the stream setup phase will be completed
     faster.
     The time period for which the failure information is maintained
     must be consistent with the expected lifetime of that
     information.  Failures due to lack of reachability will remain
     relevant for time periods large enough to allow for network
     reconfigurations or repairs.  Failures due to routing loops
     will be valid only until the relevant routing information has
     propagated, which can be a short time period.  Lack of
     bandwidth resulting from over-allocation will remain valid
     until streams are terminated, which is an unpredictable time,
     so the time that such information is maintained should also be
     short.
     If a CONNECT message reaches a target, the target should as
     efficiently as possible use the state that it has saved from
     before the stream failed during recovery of the stream.  It
     will then issue an ACCEPT message toward the origin.  The
     ACCEPT message will be intercepted by the ST agent that is
     attempting recovery of the damaged stream, if not the origin.
     If the FlowSpec contained in the ACCEPT specifies the same
     selection of parameters as were in effect before the failure,
     then the ST agent that is attempting recovery will not
     propagate the ACCEPT.  If the selections of the parameters are
     different, then the agent that is attempting recovery will send
     the origin a NOTIFY message with the appropriate reason code
     (FailureRecovery) that contains a FlowSpec that specifies the
     new parameter values.  The origin may then have to change its
     data generation characteristics and the stream's parameters
     with a CHANGE message to use the newly recovered subtree.
     3.7.2.1.         Subset
        Subsets of this mechanism may reduce the functionality in
        the following ways.  A host agent might not retain state
        describing a stream that fails with a DISCONNECT message
        with the appropriate reason code ("failure" or
        StreamPreempted).
        An agent might force the NoRecovery option always to be set.
        In this case, it will allow the option to be propagated in
        the CONNECT message, but will propagate the REFUSE message
        with the appropriate reason code ("failure" or
        StreamPreempted) without attempting recovery of the damaged
        stream.
        If an ST agent allows stream recovery and attempts recovery
        of a stream, it might choose a FlowSpec to specify exactly
        the current values of the parameters, with no ranges or
        options.
  3.7.3.        A Group of Streams
     There may be a need to associate related streams.  The Group
     mechanism is simply an association technique that allows ST
     agents to identify the different streams that are to be
     associated.  Streams are in the same Group if they have the
     same Group Name in the GroupName field of the (R)Group
     parameter.  At this time there are no ST control messages that
     modify Groups.  Group Names have the same format as stream
     Names, and can share the same name space.  A stream that is a
     member of a Group can specify one or more (Subgroup Identifier,
     Relation) tuples.  The Relation specifies how the members of
     the Subgroup of the Group are related.  The Subgroups
     Identifiers need only be unique within the Group.
     Streams can be associated into Groups to support activities
     that deal with a number of streams simultaneously.  The
     operation of Groups of streams is a matter for further study,
     and this mechanism is provided to support that study.  This
     mechanism allows streams to be identified as belonging to a
     given Group and Subgroup, but in order to have any effect, the
     behavior that is expected of the Relation must be implemented
     in the ST agents.  Possible applications for this mechanism
     include the following:
      o  Associating streams that are part of a floor-controlled
         conference.  In this case, only one origin can send data
         through its stream at any given time.  Therefore, at any
         point where more than one stream passes through a branch
         or network, only enough bandwidth for one stream needs
         to be allocated.
      o  Associating streams that cannot exist independently.  An
         example of this may be the various streams that carry
         the audio, video, and data components of a conference,
         or the various streams that carry data from the
         different participants in a conference.  In this case,
         if some ST agent must preempt more than a single stream,
         and it has selected any one of the streams so
         associated, then it should also preempt the rest of the
         members of that Subgroup rather than preempting any
         other streams.
      o  Associating streams that must not be completed
         independently.  This example is similar to the preceding
         one, but relates to the stream setup phase.  In this
         example, any single member of a Subgroup of streams need
         not be completed unless the rest are also completed.
         Therefore, if one stream becomes blocked, all the others
         will also be blocked.  In this case, if there are not
         enough resources to support all the conferences that are
         attempted, some number of the conferences will complete
         and other will be blocked, rather than all conferences
         be partially completed and partially blocked.
     This document assumes that the creation and membership of the
     Group will be managed by the next protocol above ST, with the
     assistance of ST.  For example, the next higher protocol
     would request ST to create a unique Group Name and a set of
     Subgroups with specified characteristics.  The next higher
     protocol would distribute this information to the other
     participants that were to be members of the Group.  Each
     would transfer the Group Name, Subgroups, and Relations to
     the ST layer, which would simply include them in the stream
     state.
     3.7.3.1.         Group Name Generator
        This facility is provided so that an application or higher
        layer protocol can obtain a unique Group Name from the ST
        layer.  This is a mechanism for the application to request
        the allocation of a Group Name that is independent of the
        request to create a stream.  The Group Name is used by the
        application or higher layer protocol when creating the
        streams that are to be part of a group.  All that is
        required is a function of the form:
           AllocateGroupName()
              -> result, GroupName
        A corresponding function to release a Group Name is also
        desirable;  its form is:
           ReleaseGroupName( GroupName )
              -> result
     3.7.3.2.         Subset
        Since Groups are currently intended to support
        experimentation, and it is not clear how best to use them,
        it is appropriate for an implementation not to support
        Groups.  At this time, a subsetted ST agent may ignore the
        Group parameter.  It is expected that in the future, when
        Groups transition from being an experimental concept to an
        operational one, it may be the case that such subsetting
        will no longer be acceptable.  At that time, a new
        subsetting option may be defined.
  3.7.4.        HID Negotiation
     Each data packet must carry a value to identify the stream to
     which it belongs, so that forwarding can be performed.
     Conceptually, this value could be the Name of the stream.  A
     shorthand identifier is desirable for two reasons.  First,
     since each data packet must carry this identifier, network
     bandwidth efficiency suggests that it be as small as
     possible.  This is particularly important for applications
     that use small data packets, and that use low bandwidth
     networks, such as voice across packet radio networks.
     Second, the operation of mapping this identifier into a data
     object that contains the forwarding information must be
     performed at each intermediate ST agent in the stream.  To
     minimize delay and processing overhead, this operation should
     be as efficient as possible.  Most likely, this identifier
     will be used to index into an internal table.  To meet these
     goals, ST has chosen to use a 16-bit hop-by-hop identifier
     (HID).  It is large enough to handle the foreseen number of
     streams during the expected life of the protocol while small
     enough not to preclude its use as a forwarding table index.
     Note, however, that HID 0 is reserved for control messages,
     and that HIDs 1-3 are also reserved for future use.
     When ST makes use of multicast ability in networks that
     provide it, a data packet multicast by an ST agent will be
     received identically by several next-hop ST agents.  In a
     multicast environment, the HID must be selected either by
     some network-wide mechanism that selects unique identifiers,
     or it must be selected by the sender of the CONNECT message.
     Since we feel any network-wide mechanism is outside the scope
     of this protocol, we propose that the previous-hop agent
     select the HID and send it in the CONNECT message (with the
     HID Field option set, see Section 3.6.1 (page 44)) subject to
     the approval of the next-hop agents.  We call this "HID
     negotiation".
     As an origin ST agent is creating a stream or as an
     intermediate agent is propagating a CONNECT message, it must
     make a routing decision to determine which targets will be
     reached through which next-hop ST agents.  In some cases,
     several next-hops can be reached through a network that
     supports multicast delivery.  If so, those next-hops will be
     made members of a multicast group and data packets will be
     sent to the group.  Different CONNECT messages are sent to
     the several next-hops even if the data packets will be sent
     to the multicast group, because the CONNECT messages contain
     different TargetLists and are acknowledged and accepted
     separately.  However, the HID contained by the different
     CONNECT message must be identical.  The ST agent selects a
     16-bit quantity to be the HID and inserts it into each
     CONNECT message that is then sent to the appropriate
     next-hop.
     The next-hop agents that receive the CONNECT messages must
     propagate the CONNECT messages toward the targets, but must
     also look at the HID and decide whether they can approve it.
     An ST agent can only receive data packets with a given HID if
     they belong to a single stream.  If the ST agent already has
     an established stream that uses the proposed HID, this is a
     HID collision, and the agent cannot approve the HID for the
     new stream.  Otherwise the agent can approve the HID.  If it
     can approve the HID, then it must make note of that HID and
     it must respond with a HID-APPROVE message (unless it can
     immediately respond with an ERROR-IN-REQUEST or a REFUSE).
     If it cannot approve the HID then it must respond with a
     HID-REJECT message.
     An agent that sends a CONNECT message with the H bit set
     awaits its acknowledgment message (which could be a
     HID-ACCEPT, HID-REJECT, or an ERROR-IN-REQUEST) from the
     next-hops independently of receiving ACCEPT messages.  If it
     does not receive an acknowledgment within timeout ToConnect,
     it will resend the CONNECT.  If each next-hop agent responds
     with a HID-ACCEPT, this implies that they have each approved
     of the HID, so it can be used for all subsequent data
     packets.  If one or more next-hops respond with an
     HID-REJECT, then the agent that selected the HID must select
     another HID and send it to each next-hop in a set of
     HID-CHANGE messages.  The next-hop agents must respond to
     (and thus acknowledge) these HID-CHANGE messages with either
     a HID-ACCEPT or a HID-REJECT (or, in the case of an error, an
     ERROR-IN-REQUEST, or a REFUSE if the next-hop agent wants to
     abort the HID negotiation process after rejecting NHIDAbort
     proposed HIDs).  If the agent does not receive such a
     response within timeout ToHIDChange, it will resend the
     HID-CHANGE up to NHIDChange times.  If any next-hop agents
     respond with a REFUSE message that specifies all the targets
     that were included in the corresponding CONNECT, then that
     next-hop is removed from the negotiation.  The overall
     negotiation is complete only when the agent receives a
     HID-ACCEPT to the same proposed HID from all the next-hops
     that do not respond with an ERROR-IN-REQUEST or a REFUSE.
     This negotiation may continue an indeterminate length of
     time.  In fact, the CONNECT messages could propagate to the
     targets and their ACCEPT messages may potentially propagate
     back to the origin before the negotiation is complete.  If
     this were permitted, the origin would not be aware of the
     incomplete negotiation and could begin to send data packets.
     Then the agent that is attempting to select a HID would have
     to discard any data rather than sending it to the next-hops
     since it might not have a valid HID to send with the data.
     To prevent this situation, an ACCEPT should not be propagated
     back to the previous-hop until the HID negotiation with the
     next-hops has been completed.
     Although it is possible that the negotiation extends for an
     arbitrary length of time, we consider this to be very
     unlikely.  Since the HID is only relevant across a single
     hop, we can estimate the probability that a randomly selected
     HID will conflict with the HID of an established stream.
     Consider a stream in which the hop from an ST agent to ten
     next-hop agents is through the multicast facility of a given
     network.  Assume also that each of the next-hop agents
     participates in 1000 other streams, and that each has been
     created with a different HID.  A randomly selected 16-bit HID
     will have a probability of greater than 85.9% of succeeding
     on the first try, 98.1% of succeeding on the second, and
     99.8% of succeeding on the third.  We therefore suggest that
     a 16-bit HID space is sufficiently large to support ST until
     better multicast HID selection procedures, e.g., HID servers,
     can be deployed.
     An obvious way to select the HID is for the ST agents to use
     a random number generator as suggested above.  An alternate
     mechanism is for the intermediate agents to use the HID
     contained in the incoming CONNECT message for all the
     outgoing CONNECT messages, and generate a random number only
     as a second choice.  In this case, the origin ST agent would
      Agent 3                      Agent B
  1.     +-> CONNECT B -------------->+
             <RVLId=0><SVLId=32>      |
             <Ref=315><HID=5990>      V
  2.             (Check HID Table, 5990 busy, 6000-11 unused)
                                      V
  3.     +<- HID-REJECT --------------+
         |   <RVLId=32><SVLId=45>
         |   <Ref=315><HID=5990>
         V   <FreeHIDs=5990:0000FFF0>
  4.     +-> HID-CHANGE  ------------>+
             <RVLId=45><SVLId=32>     |
             <Ref=320><HID=6000>      V
  5.             (Check HID Table, 6000 (still) available)
                                      V
  6.     +<- HID-APPROVE -------------+
             <RVLId=32><SVLId=45>
             <Ref=320><HID=6000>
  7.     (Both parties have now agreed to use HID 6000)
     Figure 18.  Typical HID Negotiation (No Multicasting)
     be responsible for generating the HID, and the same HID could
     be propagated for the entire stream.  This approach has the
     marginal advantage that the HID could be created by a higher
     layer protocol that might have global knowledge and could
     select small, globally unique HIDs for all the streams.  While
     this is possible, we leave it for further study.
   Agent 2                           Agent C        Agent D

1. +->+-> CONNECT ---------------------------------->+

        |   <RVLId=0><SVLId=26>                        |
        |   <Ref=250><HID=4824>                        |
        V   <Mcast=224.1.18.216,01:00:5E:01:12:d8>     |

2. +-> CONNECT --------------------+ |

            <RVLId=0><SVLId=25>         |              |
            <Ref=252><HID=4824>         |              V

3. <Mcast=224.1.18.216, V (Check HID Table) 4. 01:00:5E:01:12:d8> (Check HID Table) (4824 ok)

                                    (4824 busy)  (4800-4809 ok)
                                  (4800-4820 ok)       |
                                        V              |

5. +<- HID-REJECT -----------------+ |

        |   <RVLId=25><SVLId=54>                       |
        |   <Ref=252><HID=4824>                        |
        V   <FreeHIDs=4824:FFFFF800>                   V

6. +<-+<- HID-APPROVE -------------------------------+

     |      <RVLId=26><SVLId=64>
     |      <Ref=250><HID=4824>
     V      <FreeHIDs=4824:FFC00080>
     (find common HID 4800)
     V

7. +->+-> HID-CHANGE ------------------------------->+

        |   <RVLId=64><SVLId=26>                       |
        V   <Ref=253><HID=4800>                        |

8. +-> HID-CHANGE ---------------->+ |

            <RVLId=54><SVLId=25>        |              V

9. <Ref=254><HID=4800> V (Check HID Table) 10. (Check HID Table) (4800 ok)

                                  (4800-4820 ok) (4800-4809 ok)
                                        V              |

11. +<- HID-APPROVE ----------------+ |

        |   <RVLId=25><SVLId=54>                       |
        |   <Ref=254><HID=4800>                        |
        V   <FreeHIDs=4800:7FFFF800>                   V

12. +<-+<- HID-APPROVE -------------------------------+

     |      <RVLId=26><SVLId=64>
     |      <Ref=253><HID=4800>
     V      <FreeHIDs=4800:7FC00080>

13. (all parties have now agreed to use HID 4800)

             Figure 19.  Multicast HID Negotiation
  Agent 2                  Agent C        Agent D     Agent 3
 1.   +----> CONNECT B ------------------------------------>+
          <RVLId=0><SVLId=24>                            V
 2.          <Ref=260><HID=4800>                    (Check HID Table)
          <Mcast=224.1.18.216,             (4800 busy, 4801-4810 ok)
           01:00:5E:01:12:d8>                            V
 3.   +<---- HID-REJECT <-----------------------------------+
   |      <RVLId=24><SVLId=33>
   |      <Ref=260><HID=4824>
   V      <FreeHIDs=4824:7FE00000>
 4.   (find common HID 4810)
   V
 5.   +->+-> HID-CHANGE ----------------------------------->+
      |   <RVLId=33><SVLId=24>                           |
      V   <Ref=262><HID=4810>                            |
 6.      +-> HID-CHANGE-ADD ------------------->+           |
      |   <RVLId=64><SVLId=26>               |           V
 7.      V   <Ref=263><HID=4810>                |   (Check HID Table)
 8.      +-> HID-CHANGE-ADD ---->+              |     (4801-4815 ok)
          <RVLId=54><SVLId=25>|              V           |
 9.          <Ref=265><HID=4810> V      (Check HID Table)   |
 10.                     (Check HID Table) (4810 busy)      |
                        (4801-4812 ok) (4801-4807 ok)    |
                              V              |           |
 11.     +<- HID-APPROVE <-------+              |           |
      |   <RVLId=25><SVLId=54>               |           |
      |   <Ref=265><HID=4810>                |           |
      V   <FreeHIDs=4810:7FD8000>            V           |
 12.     +<- HID-REJECT <-----------------------+           |
      |   <RVLId=26><SVLId=64>                           |
      |   <Ref=263><HID=4810>                            |
      V   <FreeHIDs=4810:7F000000>                       V
 13.  +<-+<- HID-APPROVE <----------------------------------+
   |      <RVLId=24><SVLId=33>
   |      <Ref=262><HID=4810>
   V      <FreeHIDs=4810:7FDF0000>
 14.  +->+-> HID-CHANGE-DELETE ---------------------------->+
   |  |   <RVLId=33><SVLId=24>                           |
   |  V   <Ref=266><HID=4810>                            |
 15.  |  +-> HID-CHANGE-DELETE ->+                          |
   |      <RVLId=54><SVLId=25>|                          |
   |      <Ref=268><HID=4810> V                          |
 16.  |  +<- HID-APPROVE --------+                          |
   |      <RVLId=25><SVLId=54>                           |
   |      <Ref=268><HID=0>                               V
 17.  |  +<- HID-APPROVE -----------------------------------+
   |      <RVLId=24><SVLId=33>
   V      <Ref=266><HID=0>
 18.  (find common HID 4801)
            Figure 20.  Multicast HID Re-Negotiation (part 1)
  Agent 2                  Agent C        Agent D     Agent 3
 18.  (find common HID 4801)
   V
 19.  +->+-> HID-CHANGE ----------------------------------->+
      |   <RVLId=33><SVLId=24>                           |
      V   <Ref=270><HID=4801>                            |
 20.     +-> HID-CHANGE-ADD ------------------->+           |
      |   <RVLId=64><SVLId=26>               |           V
 21.     V   <Ref=273><HID=4801>                |   (Check HID Table)
 22.     +-> HID-CHANGE-ADD ---->+              |     (4801-4815 ok)
          <RVLId=54><SVLId=25>|              V           |
 23.         <Ref=274><HID=4801> V      (Check HID Table)   |
 24.                     (Check HID Table)(4801-4807 ok)    |
                        (4801-4812 ok)       |           |
                              V              |           |
 25.     +<- HID-APPROVE <-------+              |           |
      |   <RVLId=25><SVLId=54>               |           |
      |   <Ref=274><HID=4801>                |           |
      V   <FreeHIDs=4801:3FF80000>           V           |
 26.     +<- HID-APPROVE <----------------------+           |
      |   <RVLId=26><SVLId=64>                           |
      |   <Ref=273><HID=4801>                            |
      V   <FreeHIDs=4801:3F000000>                       V
 27.  +<-+<- HID-APPROVE <----------------------------------+
   |      <RVLId=24><SVLId=33>
   |      <Ref=270><HID=4801>
   V      <FreeHIDs=4801:3FFF0000>
 28.  (switch data stream to HID 4801, drop 4800)
   V
 29.  +->+-> HID-CHANGE-DELETE ---------------->+
      |   <RVLId=64><SVLId=26>               |
      V   <Ref=275><HID=4800>                |
 30.     +-> HID-CHANGE-DELETE ->+              |
          <RVLId=54><SVLId=25>|              |
          <Ref=277><HID=4800> V              |
 31.  +<-+<- HID-APPROVE --------+              |
   |      <RVLId=25><SVLId=54>               |
   V      <Ref=277><HID=0>                   V
 32.  +<-+<- HID-APPROVE -----------------------+
   |      <RVLId=26><SVLId=64>
   V      <Ref=275><HID=0>
   (all parties have now agreed to use HID 4801)
            Figure 20.  Multicast HID Re-Negotiation (part 2)
     3.7.4.1.         Subset
        The above mechanism can operate exactly as described even if
        the ST agents do not all use the entire 16 bits of the HID.
        A low capacity ST agent that cannot support a large number
        of simultaneous streams may use only some of the bits in the
        HID, say for example the low order byte.  This may allow
        this disadvantaged agent to use smaller internal data
        structures at the expense of causing HID collisions to occur
        more often.  However, neither the disadvantaged agent's
        previous-hop nor its next-hops need be aware of its
        limitations.  In the HID negotiation, the negotiators still
        exchange a 16-bit quantity.
  3.7.5.        IP Encapsulation of ST
     ST packets may be encapsulated in IP to allow them to pass
     through routers that don't support the ST Protocol.  Of course,
     ST resource management is precluded over such a path, and
     packet overhead is increased by encapsulation, but if the
     performance is reasonably predictable this may be better than
     not communicating at all.  IP encapsulation may also be
     required either for enhanced security (see Section 3.7.8 (page
     67)) or for user-space implementations of ST in hosts that
     don't allow demultiplexing on the IP Version Number field (see
     Section 4 (page 75)), but do allow access to raw IP packets.
     IP-encapsulated ST packets begin with a normal IP header.  Most
     fields of the IP header should be filled in according to the
     same rules that apply to any other IP packet.  Three fields of
     special interest are:
      o  Protocol is 5 to indicate an ST packet is enclosed, as
         opposed to TCP or UDP, for example.  The assignment of
         protocol 5 to ST is an arranged coincidence with the
         assignment of IP Version 5 to ST [18].
      o  Destination Address is that of the next-hop ST agent.
         This may or may not be the target of the ST stream.
         There may be an intermediate ST agent to which the
         packet should be routed to take advantage of service
         guarantees on the path past that agent.  Such an
         intermediate agent would not be on a directly-connected
         network (or else IP encapsulation wouldn't be needed),
         so it would probably not be listed in the normal routing
         table.  Additional routing mechanisms, not defined here,
         will be required to learn about such agents.
      o  Type-of-Service may be set to an appropriate value for
         the service being requested (usually low delay, high
     throughput, normal reliability).  This feature is not
     implemented uniformly in the Internet, so its use can't be
     precisely defined here.
     Since there can be no guarantees made about performance across
     a normal IP network, the ST agent that will encapsulate should
     modify the Desired FlowSpec parameters when the stream is being
     established to indicate that performance is not guaranteed.  In
     particular, Reliability should be set to the minimum value
     (1/256), and suitably large values should be added to the
     Accumulated Mean Delay and Accumulated Delay Variance to
     reflect the possibility that packets may be delayed up to the
     point of discard when there is network congestion.  A suitably
     large value is 255 seconds, the maximum packet lifetime as
     defined by the IP Time-to-Live field.
     IP encapsulation adds little difficulty for the ST agent that
     receives the packet.  The IP header is simply removed, then the
     ST header is processed as usual.
     The more difficult part is during setup, when the ST agent must
     decide whether or not to encapsulate.  If the next-hop ST agent
     is on a remote network and the route to that network is through
     a router that supports IP but not ST, then encapsulation is
     required.  As mentioned in Section 3.8.1 (page 69), routing
     table entries must be expanded to indicate whether the router
     supports ST.
     On forwarding, the (mostly constant) IP Header must be inserted
     and the IP checksum appropriately updated.
     On a directly connected network, though, one might want to
     encapsulate only when sending to a particular destination host
     that does not allow demultiplexing on the IP Version Number
     field.  This requires the routing table to include host-route
     as well as network-route entries.  Host-route entries might
     require static definition if the hosts do not participate in
     the routing protocols.  If packet size is not a critical
     performance factor, one solution is always to encapsulate on
     the directly connected network whenever some hosts require
     encapsulation.  Those that don't require the encapsulation
     should be able to remove it upon reception.
     3.7.5.1.         IP Multicasting
        If an ST agent must use IP encapsulation to reach multiple
        next-hops toward different targets, then either the packet
        must be replicated for transmission to each next-hop, or IP
        multicasting [6] may be used if it is implemented in the
        next-hop ST agents and in the intervening IP routers.
        This is analogous to using network-level service to
        multicast to several next-hop agents on a directly connected
        network.
        When the stream is established, the collection of next-hop
        ST agents must be set up as an IP multicast group.  It may
        be necessary for the ST agent that wishes to send the IP
        multicast to allocate a transient multicast group address
        and then tell the next-hop agents to join the group.  Use of
        the MulticastAddress parameter (see Section 4.2.2.7 (page
        86)) provides one way that the information may be
        communicated, but other techniques are possible.  The
        multicast group address in inserted in the Destination
        Address field of the IP encapsulation when data packets are
        transmitted.
        A block of transient IP multicast addresses, 224.1.0.0 -
        224.1.255.255, has been allocated for this purpose.  There
        are 2^16 addresses in this block, allowing a direct mapping
        with 16-bit HIDs, if appropriate.  The mechanisms for
        allocating these addresses are not defined here.
        In addition, two permanent IP multicast addresses have been
        assigned to facilitate experimentation with exchange of
        routing or other information among ST agents.  Those
        addresses are:
           224.0.0.7    All ST routers
           224.0.0.8    All ST hosts
        An ST router is an ST agent that can pass traffic between
        attached networks;  an ST host is an ST agent that is
        connected to a single network or is not permitted to pass
        traffic between attached networks.  Note that the range of
        these multicasts is normally just the attached local
        network, limited by setting the IP time-to-live field to 1
        (see [6]).
  3.7.6.        Retransmission
     The ST Control Message Protocol is made reliable through use of
     retransmission when an expected acknowledgment is not received
     in a timely manner.  The problem of when to send a
     retransmission has been studied for protocols such as TCP [2]
     [10] [11].  The problem should be simpler for ST since control
     messages usually only have to travel a single hop and they do
     not contain very much data.  However, the algorithms developed
     for TCP are sufficiently simple that their use is recommended
     for ST as well;  see [2].  An implementor might, for example,
     choose to keep statistics separately for each
     neighboring ST agent, or combined into a single statistic for
     an attached network.
     Estimating the packet round-trip time (RTT) is a key function
     in reliable transport protocols such as TCP.  Estimation must
     be dynamic, since congestion and resource contention result in
     varying delays.  If RTT estimates are too low, packets will be
     retransmitted too frequently, wasting network capacity.  If RTT
     estimates are too high, retransmissions will be delayed
     reducing network throughput when transmission errors occur.
     Article [11] identifies problems that arise when RTT estimates
     are poor, outlines how RTT is used and how retransmission
     timeouts (RTO) are estimated, and surveys several ways that RTT
     and RTO estimates can be improved.
     Note the HELLO/ACK mechanism described in Section 3.7.1.2 (page
     49) can give an estimate of the RTT and its variance.  These
     estimates are also important for use with the delay and delay
     variance entries in the FlowSpec.
  3.7.7.        Routing
     ST requires access to routing information in order to select a
     path from an origin to the destination(s).  However, routing is
     considered to be a separate issue and neither the routing
     algorithm nor its implementation is specified here.  ST should
     operate equally well with any reasonable routing algorithm.
     While ST may be capable of using several types of information
     that are not currently available, the minimal information
     required is that provided by IP, namely the ability to find an
     interface and next hop router for a specified IP destination
     address and Type of Service.  Methods to make more information
     available and to use it are left for further study.  For
     initial ST implementations, any routing information that is
     required but not automatically provided will be assumed to be
     manually configured into the ST agents.
  3.7.8.        Security
     The ST Protocol by itself does not provide security services.
     It is more vulnerable to misdelivery and denial of service than
     IP since the ST Header only carries a 16-bit HID for
     identification purposes.  Any information, such as source and
     destination addresses, which a higher-layer protocol might use
     to detect misdelivery are the responsibility of either the
     application or higher-layer protocol.
     ST is less prone to traffic analysis than IP since the only
     identifying information contained in the ST Header is a hop-
     by-hop identifier (HID).  However, the use of a HID is also
     what makes ST more vulnerable to denial of service since an ST
     agent has no reliable way to detect when bogus traffic is
     injected into, and thus consumes bandwidth from, a user's
     stream.  Detection can be enhanced through use of per-interface
     forwarding tables and verification of local network source and
     destination addresses.
     We envision that applications that require security services
     will use facilities, such as the Secure Digital Networking
     System (SDNS) layer 3 Security Protocol (SP3/D) [19] [20].  In
     such an environment, ST PDUs would first be encapsulated in an
     IP Header, using IP Protocol 5 (ST) as described in Section
     3.7.5 (page 64).  These IP datagrams would then be secured
     using SP3/D, which results in another IP Protocol 5 PDU that
     can be passed between ST agents.
     This memo does not specify how an application invokes security
     services.

3.8. ST Service Interfaces

  ST has several interfaces to other modules in a communication
  system.  ST provides its services to applications or transport-
  level protocols through its "upper" interface (or SAP).  ST in
  turn uses the services provided by network layers, management
  functions (e.g., address translation and routing), and IP.  The
  interfaces to these modules are described in this section in the
  form of subroutine calls.  Note that this does not mean that an
  implementation must actually be implemented as subroutines, but is
  instead intended to identify the information to be passed between
  the modules.
  In this style of outlining the module interfaces, the information
  passed into a module is shown as arguments to the subroutine call.
  Return information and/or success/failure indications are listed
  after the arrow ("->") that follows the subroutine call.  In
  several cases, a list of values must either be passed to or
  returned from a module interface.  Examples include a set of
  target addresses, or the mappings from a target list to a set of
  next hop addresses that span the route to the originally listed
  targets.  When such a list is appropriate, the values repeated for
  each list element are bracketed and an asterisk is added to
  indicate that zero, one, or many list elements can be passed
  across the interface (e.g., "<target>*" means zero, one, or more
  targets).
  3.8.1.        Access to Routing Information
     The design of routing functions that can support a variety of
     resource management algorithms is difficult.  In this section
     we suggest a set of preliminary interfaces suitable for use in
     initial experiments.  We expect that these interfaces will
     change as we gain more insight into how routing, resource
     allocation, and decision making elements are best divided.
     Routing functions are required to identify the set of potential
     routes to each destination site.  The routing functions should
     make some effort to identify routes that are currently
     available and that meet the resource requirements. However,
     these properties need not be confirmed until the actual
     resource allocation and connection setup propagation are
     performed.
     The minimum capability required of the interface to routing is
     to identify the network interface and next hop toward a given
     target.  We expect that the traditional routing table will need
     to be extended to include information that ST requires such as
     whether or not a next hop supports ST, and, if so, whether or
     not IP encapsulation (see Section 3.7.5 (page 64)) is required
     to communicate with it.  In particular, host entries will be
     required for hosts that can only support ST through
     encapsulation because the IP software either is not capable of
     demultiplexing datagrams based on the IP Version Number field,
     or the application interface only supports access to raw IP
     datagrams.  This interface is illustrated by the function:
        FindNextHop( destination, TOS )
           -> result, < interface, next hop, ST-capable,
              MustEncapsulate >*
     However, the resource management functions can best tradeoff
     among alternative routes when presented with a matrix of all
     potential routes.  The matrix entry corresponding to a
     destination and a next hop would contain the estimated
     characteristics of the corresponding pathway.  Using this
     representation, the resource management functions can quickly
     determine the next hop sets that cover the entire destination
     list, and compare the various parameters of the tradeoff
     between the guarantees that can be promised by each set.  An
     interface that returns a compressed matrix, listing the
     suitable routes by next hop and the destinations reachable
     through each, is illustrated by the function:
        FindNextHops( < destination >*, TOS )
           -> result, < destination, < interface, next hop,
              ST-capable, MustEncapsulate >* >*
     We hope that routing protocols will be available that propagate
     additional metrics of bandwidth, delay, bit/burst error rate,
     and whether a router has ST capability.  However, propagating
     this information in a timely fashion is still a key research
     issue.
  3.8.2.        Access to Network Layer Resource Reservation
     The resources required to reach the next-hops associated with
     the chosen routes must be allocated.  These allocations will
     generally be requested and released incrementally.  As the
     next-hop elements for the routes are chosen, the network
     resources between the current node and the next-hops must be
     allocated.  Since the resources are not guaranteed to be
     available -- a network or node further down the path might have
     failed or needed resources might have been allocated since the
     routing decisions where made -- some of these allocations may
     have to be released, another route selected, and a new
     allocation requested.
     There are four basic interface functions needed for the network
     resource allocator.  The first checks to see if the required
     resources are available, returning the likelihood that an
     ensuing resource allocation will succeed.  A probability of 0%
     indicates the resources are not available or cannot promise to
     meet the required guarantees.  Low probabilities indicate that
     most of the resource has been allocated or that there is a lot
     of contention for using the resource.  This call does not
     actually reserve the resources:
        ResourceProbe( requirements )
           -> likelihood
     Another call reserves the resources:
        ResourceReserve( requirements )
           -> result, reservation_id
     The third call adjusts the resource guarantees:
        ResourceAdjust( reservation_id, new requirements )
           -> result
     The final call allows the resources to be released:
        ResourceRelease( reservation_id )
           -> result
  3.8.3.        Network Layer Services Utilized
     ST requires access to the usual network layer functions to send
     and receive packets and to be informed of network status
     information.  In addition, it requires functions to enable and
     disable reception of multicast packets.  Such functions might
     be defined as:
        JoinLocalGroup( network level group-address )
           -> result, multicast_id
        LeaveLocalGroup( network level group-address )
           -> result
        RecvNet( SAP )
           -> result, src, dst, len, BufPTR )
        SendNet( src, dst, SAP, len, BufPTR )
           -> result
        GetNotification( SAP )
           -> result, infop
  3.8.4.        IP Services Utilized
     Since ST packets might be sent or received using IP
     encapsulation, IP level routines to join and leave multicast
     groups are required in addition to the usual services defined
     in the IP specification (see the IP specification [2] [15] and
     the IP multicast specification [6] for details).
        JoinHostGroup( IP level group-address, interface )
           -> result, multicast_id
        LeaveHostGroup( IP level group-address, interface )
           -> result
        GET_SRCADDR( remote IP addr, TOS )
           -> local IP address
        SEND( src, dst, prot, TOS, TTL, BufPTR, len, Id, DF,
              opt )
           -> result
        RECV( BufPTR, prot )
           -> result, src, dst, SpecDest, TOS, len, opt
        GET_MAXSIZES( local, remote, TOS )
           -> MMS_R, MMS_S
        ADVISE_DELIVPROB( problem, local, remote, TOS )
           -> result
        SEND_ICMP( src, dst, TOS, TTL, BufPTR, len, Id, DF, opt )
           -> result
        RECV_ICMP( BufPTR )
           -> result, src, dst, len, opt
  3.8.5.        ST Layer Services Provided
     Interface to the ST layer services may be modeled using a set
     of subroutine calls (but need not be implemented as such).
     When the protocol is implemented as part of an operating
     system, these subroutines may be used directly by a higher
     level protocol processing layer.
     These subroutines might also be provided through system service
     calls to provide a raw interface for use by an application.
     Often, this will require further adaptation to conform with the
     idiom of the particular operating system.  For example, 4.3 BSD
     UNIX (TM) provides sockets, ioctls and signals for network
     programming.
     open( connect/listen, SAPBytes, local SAP, local host,
           account, authentication info, < foreign host,
           SAPBytes, foreign SAP, options >*, flow spec,
           precedence, group name, optional parameters )
         -> result, id, stream name, < foreign host,
           foreign SAPBytes, foreign SAP, result, flow spec,
           rname, optional parameters >*
     Note that an open by a target in "listen mode" may cause ST to
     create a state block for the stream to facilitate rendezvous.
     add( id, SAPBytes, local SAP, local host, < foreign host,
          SAPBytes, foreign SAP, options >*, flow spec,
          precedence, group name, optional parameters )
        -> result, < foreign host, foreign SAPBytes,
           foreign SAP, result,
           flow spec, rname, optional parameters >*
     send( id, buffer address, byte count, priority )
        -> result, next send time, burst send time
     recv( id, buffer address, max byte count )
        -> result, byte count
     recvsignal( id )
        -> result, signal, info
     receivecontrol( id )
        -> result, id, stream name, < foreign host,
           foreign SAPBytes, foreign SAP, result, flow spec,
           rname, optional parameters >*
     sendcontrol( id, flow spec, precedence, options,
           < foreign host, SAPBytes, foreign SAP, options >*)
        -> result, < foreign host, foreign SAPBytes,
           foreign SAP, result, flow spec, rname,
           optional parameters >*
     change( id, flow spec, precedence, options,
           < foreign host, SAPBytes, foreign SAP, options >*)
        -> result, < foreign host, foreign SAPBytes,
           foreign SAP, result, flow spec, rname,
           optional parameters >*
     close( id, < foreign host, SAPBytes, foreign SAP >*,
           optional parameters )
        -> result
     status( id/stream name/group name )
        -> result, account, group name, protocol,
           < stream name, < foreign host, SAPbytes,
           foreign SAP, state, options, flow spec,
           routing info, rname >*, precedence, options >*
     creategroup( members* )
        -> result, group name
     deletegroup( group name, members* )
        -> result
                  [This page intentionally left blank.]

ST Protocol Data Unit Descriptions

The ST PDUs sent between ST agents consist of an ST Header ncapsulating either a higher layer PDU or an ST Control Message. Since ST operates as an extension of IP, the packet arrives at the same network service access point that IP uses to receive IP datagrams, e.g., ST would use the same ethertype (0x800) as does IP. The two types of packets are distinguished by the IP Version Number field (the first four bits of the packet); IP currently uses a value of 4, while ST has been assigned the value 5 [18]. There is no requirement for compatibility between IP and ST packet headers beyond the first four bits.

The ST Header also includes an ST Version Number, a total length field, a header checksum, and a HID, as shown in Figure 21. See Appendix 1 (page 147) for an explanation of the notation.

  ST is the IP Version Number assigned to identify ST packets.  The
  value for ST is 5.
  Ver is the ST Version Number.  This document defines ST Version 2.
  Pri is the priority of the packet.  It is used in data packets to
  indicate those packets to drop if a stream is exceeding its
  allocation.  Zero is the lowest priority and 7 the highest.
  T (bit 11) is used to indicate that a Timestamp is present
  following the ST Header but before any next higher layer protocol
  data.  The Timestamp is not permitted on ST Control Messages
  (which may use the OriginTimestamp option).
  Bits 12 through 15 are spares and should be set to 0.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ST=5 | Ver=2 | Pri |T| Bits | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HID | HeaderChecksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- Timestamp -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 21.  ST Header
  TotalBytes is the length, in bytes, of the entire ST packet, it
  includes the ST Header and optional Timestamp but does not include
  any local network headers or trailers.  In general, all length
  fields in the ST Protocol are in units of bytes.
  HID is the 16-bit hop-by-hop stream identifier.  It is an
  abbreviation for the Name of the stream and is used both to reduce
  the packet header length and, by the receiver of the data packet,
  to make the forwarding function more efficient.  Control Messages
  have a HID value of zero.  HIDs are negotiated by the next-hop and
  previous-hop agents to make the abbreviation unique.  It is used
  here in the ST Header and in various Control Messages.  HID values
  1-3 are reserved for future use.
  HeaderChecksum covers only the ST Header and Timestamp, if
  present.  The ST Protocol uses 16-bit checksums here in the ST
  Header and in each Control Message.  The standard Internet
  checksum algorithm is used:  "The checksum field is the 16-bit
  one's complement of the one's complement sum of all 16-bit words
  in the header.  For purposes of computing the checksum, the value
  of the checksum field is zero."  See [1] [12] [15] for suggestions
  for efficient checksum algorithms.
  Timestamp is an optional timestamp inserted into data packets by
  the origin.  It is only present when the T bit, described above,
  is set (1).  Its use is negotiated at connection setup time;  see
  Sections 4.2.3.5 (page 108) and 4.2.3.1 (page 100).  The Timestamp
  has the NTP format;  see [13].

4.1. Data Packets

  ST packets whose HID is not zero to three are user data packets.
  Their interpretation is a matter for the higher layer protocols
  and consequently is not specified here.  The data packets are not
  protected by an ST checksum and will be delivered to the higher
  layer protocol even with errors.
  ST agents will not pass data packets over a new hop whose setup is
  not complete, i.e., a HID must have been negotiated and either an
  ACCEPT or REFUSE has been received for all targets specified in
  the CONNECT.

4.2. ST Control Message Protocol Descriptions

  ST Control Messages are between a previous-hop agent and its
  next-hop agent(s) using a HID of zero.  The control protocol
  follows a request-response model with all requests expecting
  responses.  Retransmission after timeout (see Section 3.7.6 (page
  66)) is used to allow for lost or ignored messages.  Control
  messages do not extend across packet boundaries; if a control
  message is too large for the MTU of a hop, its information
  (usually a TargetList) is partitioned and a control message per
  partition is sent.  All control messages have the following
  format:
     OpCode identifies the type of control message.  Each is
     described in detail in following sections.
     Options is used to convey OpCode-specific variations for a
     control message.
     TotalBytes is the length of the control message, in bytes,
     including all OpCode specific fields and optional parameters.
     The value is always divisible by four.
     RVLId is used to convey the Virtual Link Identifier of the
     receiver of the control message, when known, or zero in the
     case of an initial CONNECT or diagnostic message.  The RVLId is
     intended to permit efficient dispatch to the portion of a
     stream's state machine containing information about a specific
     operation in progress over the link.  RVLId values 1-3 are
     reserved; see Sections 3 (page 17) and 3.7.1.2 (page 49).
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode | Options | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+

OpCode Specific Data :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 22.  ST Control Message Format
     SVLId is used to convey the Virtual Link Identifier of the
     sender of the control message.  Except for ERROR-IN-REQUEST and
     diagnostic messages, it must never be zero.  SVLId values 1-3
     are reserved; see Sections 3 (page 17) and 3.7.1.2 (page 49).
     Reference is a transaction number.  Each sender of a request
     control message assigns a Reference number to the message that
     is unique with respect to the stream.  The Reference number is
     used by the receiver to detect and discard duplicates.  Each
     acknowledgment carries the Reference number of the request
     being acknowledged.  Reference zero is never used, and
     Reference numbers are assumed to be monotonically increasing
     with wraparound so that the older-than and more-recent-than
     relations are well defined.
     LnkReference contains the Reference field of the request
     control message that caused this request control message to be
     created.  It is used in situations where a single request leads
     to multiple "responses".  Examples are CONNECT and CHANGE
     messages that must be acknowledged hop-by-hop and will also
     lead to an ACCEPT or REFUSE from each target in the TargetList.
     SenderIPAddress is the 32-bit IP address of the network
     interface that the ST agent used to send the control message.
     This value changes each time the packet is forwarded by an ST
     agent (hop-by-hop).
     Checksum is the checksum of the control message.  Because the
     control messages are sent in packets that may be delivered with
     bits in error, each control message must be checked before it
     is acted upon;  see Section 4 (page 76).
     OpCode Specific Data contains any additional information that
     is associated with the control message.  It depends on the
     specific control message and is explained further below.  In
     some response control messages, fields of zero are included to
     allow the format to match that of the corresponding request
     message.  The OpCode Specific Data may also contain any of the
     optional Parameters defined in Section 4.2.2 (page 80).
  4.2.1.        ST Control Messages
     The CONNECT and CHANGE messages are used to establish or modify
     branches in the stream.  They propagate in the direction from
     the origin toward the targets.  They are end-to-end messages
     created by the origin.  They propagate all the way to the
     targets, and require ERROR-IN-REQUEST, ACK, HID-REJECT, HID-
     APPROVE, ACCEPT, or REFUSE messages in response.  The CONNECT
     message is the stream setup message.  The CHANGE message is
     used to change the characteristics of an established stream.
     The CONNECT message is also used to add one or more targets to
     an existing stream and during recovery of a broken stream.
     Both messages have a TargetList parameter and are processed
     similarly.
     The DISCONNECT message is used to tear down streams or parts of
     streams.  It propagates in the direction from the origin toward
     the targets.  It is either used as an end-to-end message
     generated by the origin that is used to completely tear down a
     stream, or is generated by an intermediate ST agent that
     preempts a stream or detects the failure of its previous-hop
     agent or network in the stream.  In the latter case, it is used
     to tear down the part of the stream from the failure to the
     targets, thus the message propagates all the way to the
     targets.
     The REFUSE message is sent by a target to refuse to join or
     remove itself from a stream;  in these cases, it is an end-to-
     end message.  An intermediate ST agent issues a REFUSE if it
     cannot find a route to a target, can only find a route to a
     target through the previous-hop, preempts a stream, or detects
     a failure in a next-hop ST agent or network.  In all cases a
     REFUSE propagates in the direction toward the origin.
     The ACCEPT message is an end-to-end message generated by a
     target and is used to signify the successful completion of the
     setup of a stream or part of a stream, or the change of the
     FlowSpec.  There are no other messages that are similar to it.
     The following sections contain descriptions of common fields
     and parameters, followed by descriptions of the individual
     control messages, both listed in alphabetical order.  A brief
     description of the use of the control message is given.  The
     packet format is shown graphically.
  4.2.2.        Common SCMP Elements
     Several fields and parameters (referred to generically as
     "elements") are common to two or more PDUs.  They are described
     in detail here instead of repeating their description several
     times.  In many cases, the presence of a parameter is optional.
     To permit the parameters to be easily defined and parsed, each
     is identified with a PCode byte that is followed by a PBytes
     byte indicating the length of the parameter in bytes (including
     the PCode, PByte, and any padding bytes).  If the length of the
     information is not a multiple of 4 bytes, the parameter is
     padded with one to three zero (0) bytes.  PBytes is thus always
     a multiple of four.  Parameters can be present in any order.
     4.2.2.1.         DetectorIPAddress
        Several control messages contain the DetectorIPAddress
        field.  It is used to identify the agent that caused the
        first instance of the message to be generated, i.e., before
        it was propagated.  It is copied from the received message
        into the copy of the message that is to be propagated to a
        previous-hop or next-hop.  It use is primarily diagnostic.
     4.2.2.2.         ErroredPDU
        The ErroredPDU parameter (PCode = 1) is used for diagnostic
        purposes to encapsulate a received ST PDU that contained an
        error.  It may be included in the ERROR-IN-REQUEST, ERROR-
        IN-RESPONSE, or REFUSE messages.  It use is primarily
        diagnostic.
           PDUBytes indicates how many bytes of the PDUInError are
           actually present.
           ErrorOffset contains the number of bytes into the errored
           PDU to the field containing the error.  At least as much
           of the PDU in error must be included to
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 1 | PBytes | PDUBytes | ErrorOffset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

PDUInError : Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 23.  ErroredPDU
           include the field or parameter identified by ErrorOffset;
           an ErrorOffset of zero would imply a problem with the IP
           Version Number or ST Version Number fields.
           PDUInError is the PDU in error, beginning with the ST
           Header.
     4.2.2.3.         FlowSpec & RFlowSpec
        The FlowSpec is used to convey stream service requirements
        end-to-end.  We expect that other versions of FlowSpec will
        be needed in the future, which may or may not be subsets or
        supersets of the version described here.  PBytes will allow
        new constraints to be added to the end without having to
        simultaneously update all implementations in the field.
        Implementations are expected to be able to process in a
        graceful manner a Version 4 (or higher) structure that has
        more elements than shown here.
        The FlowSpec parameter (PCode = 2) is used in several
        messages to convey the FlowSpec.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode | PBytes | Version = 3 | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DutyFactor | ErrorRate | Precedence | Reliability | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tradeoffs | RecoveryTimeout | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LimitOnCost | LimitOnDelay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LimitOnPDUBytes | LimitOnPDURate | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MinBytesXRate | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AccdMeanDelay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AccdDelayVariance | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DesPDUBytes | DesPDURate | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 24.  FlowSpec & RFlowSpec
        The RFlowSpec parameter (PCode = 12) is used in conjunction
        with the FDx option to convey the FlowSpec that is to be
        used in the reverse direction.
           Version identifies the version of the FlowSpec.  Version
           3 is defined here.
           DutyFactor is the estimated proportion of the time that
           the requested bandwidth will actually be in use.  Zero is
           taken to represent 256 and signify a duty factor of 1.
           Other values are to be divided by 256 to yield the duty
           factor.
           ErrorRate expresses the error rate as the negative
           exponent of 10 in the error rate.  One (1) represents a
           bit error rate of 0.1 and 10 represents 0.0000000001.
           Precedence is the precedence of the connection being
           established.  Zero represents the lowest precedence.
           Note that non-zero values of this parameter should be
           subject to authentication and authorization checks, which
           are not specified here.  In general, the distinction
           between precedence and priority is that precedence
           specifies streams that are permitted to take previously
           committed resources from another stream, while priority
           identifies those PDUs that a stream is most willing to
           have dropped when the stream exceeds its guaranteed
           limits.
           Reliability is modified by each intervening ST agent as a
           measure of the probability that a given offered data
           packet will be forwarded and not dropped.  Zero is taken
           to represent 256 and signify a probability of 1.  Other
           values are to be divided by 256 to yield the probability.
           Tradeoffs is incompletely defined at this time.  Bits
           currently specified are as follows:
              The most significant bit in the field, bit 0 in the
              Figure 24, when one (1) means that each ST agent must
              "implement" all constraints in the FlowSpec even if
              they are not shown in the figure, e.g., when the
              FlowSpec has been extended.  When zero (0), unknown
              constraints may be ignored.
              The second most significant bit in the field, bit 1,
              when one (1) means that one or more constraints are
              unknown and have been ignored.  When zero (0), all
              constraints are known and have been processed.
              The third most significant bit in the field, bit 2, is
              used for RevChrg;  see Section 3.6.5 (page 46).
              Other bits are currently unspecified, and should be
              set to zero (0) by the origin ST agent and not changed
              by other agents unless those agents know their
              meaning.
           RecoveryTimeout specifies the nominal number of
           milliseconds that the application is willing to wait for
           a failed system component to be detected and any
           corrective action to be taken.
           LimitOnCost specifies the maximum cost that the origin is
           willing to expend.  A value of zero indicates that the
           application is not willing to incur any direct charges
           for the resources used by the stream.  The meaning of
           non-zero values is left for further study.
           LimitOnDelay specifies the maximum end-to-end delay, in
           milliseconds, that can be tolerated by the origin.
           LimitOnPDUBytes is the smallest packet size, in terms of
           ST-user data bytes, that can be tolerated by the origin.
           LimitOnPDURate is the lowest packet rate that can be
           tolerated by the origin, expressed as tenths of a packet
           per second.
           MinBytesXRate is the minimum bandwidth that can be
           tolerated by the origin, expressed as a product of bytes
           and tenths of a packet per second.
           AccdMeanDelay is modified by each intervening ST agent.
           This provides a means of reporting the total expected
           delay, in milliseconds, for a data packet.  Note that it
           is implicitly assumed that the requested mean delay is
           zero and there is no limit on the mean delay, so there
           are no parameters to specify these explicitly.
           AccdDelayVariance is also modified by each intervening ST
           agent as a measure, in milliseconds squared, of the
           packet dispersion.  This quantity can be used by the
           target or origin in determining whether the resulting
           stream has an adequate quality of service to support the
           application.  Note that it is implicitly assumed that the
           requested delay variance is zero and there is no limit on
           the delay variance, so there are no parameters to specify
           these explicitly.
           DesPDUBytes is the desired PDU size in bytes.  This is
           not necessarily the same as the minimum necessary PDU
           size.  This value may be made smaller by intervening ST
           agents so long as it is not made smaller than
           LimitOnPDUBytes.  The *PDUBytes limits measure the size
           of the PDUs of next-higher protocol layer, i.e., the user
           information contained in a data packet.  An ST agent must
           account for both the ST Header (including possible IP
           encapsulation) and any local network headers and trailers
           when comparing a network's MTU with *PDUBytes.  In an
           ACCEPT message, the value of this field will be no larger
           than the MTU of the path to the specified target.
           DesPDURate is the requested PDU rate, expressed as tenths
           of a packet per second.  This value may be made smaller
           by intervening ST agents so long as it is not made
           smaller than LimitOnPDURate.
           It is expected that the next parameter to be added to the
           FlowSpec will be a Burst Descriptor.  This parameter will
           describe the burstiness of the offered traffic.  For
           example, this may include the simple average rate, peak
           rate and variance values, or more complete descriptions
           that characterize the distribution of expected burst
           rates and their expected duration.  The nature of the
           algorithms that deal with the traffic's burstiness and
           the information that needs to be described by this
           parameter will be subjects of further experimentation.
           It is expected that a new FlowSpec with Version = 4 will
           be defined that looks like Version 3 but has a Burst
           Descriptor parameter appended to the end.
     4.2.2.4.         FreeHIDs
        The FreeHIDs parameter (PCode = 3) is used to communicate to
        the previous-hop suggestions for a HID.  It consists of
        BaseHID and FreeHIDBitMask fields.  Experiments will
        determine how long the mask should be for practical use of
        this parameter.  The parameter (if implemented) should be
        included in all HID-REJECTs, and in HID-APPROVEs that are
        linked to a multicast CONNECT, e.g., one containing the
        MulticastAddress parameter.
           BaseHID was the suggested value in a HID-CHANGE or
           CONNECT.  BaseHID is chosen to be the suggested HID value
           to insure that the masks from multiple FreeHIDs
           parameters will overlap.
           FreeHIDBitMask identifies available HID values as
           follows.  Bit 0 in the FreeHIDBitMask corresponds to a
           HID with a value equal to BaseHID with the 5 least
           significant bits set to zero, bit 1 corresponds to that
           value + 1, etc.  This alignment of the mask on a 32-bit
           boundary is used so that masks from several FreeHIDs
           parameters might more easily be combined using a bit-wise
           AND function to find a free HID.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 3 | 4+4*N | BaseHID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FreeHIDBitMask :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 25.  FreeHIDs
     4.2.2.5.         Group & RGroup
        The Group parameter (PCode = 4) is an optional argument
        used only for the creation of a stream.  This parameter
        contains a GroupName; the GroupName may be the same as the
        Name of one of the group's streams.  In addition, there
        may be some number of <SubGroupId, Relation> tuples that
        describe the meaning of the grouping and the relation
        between the members of the group.  The forms of grouping
        are for further study.
        The RGroup parameter (PCode = 13) is an optional argument
        used only for the creation of a stream in the reverse
        direction that is a member of a Group;  see the FDx
        option, Section 3.6.3 (page 45).  This parameter has the
        same format as the Group parameter.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode | 12+4*N | ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+ ! GroupName ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SubGroupId | Relation | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

... : ... :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SubGroupId | Relation | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 26.  Group & RGroup
        A GroupName has the same format as a Name;  see Figure 29.
     4.2.2.6.         HID & RHID
        The HID parameter (PCode = 5) is used in the NOTIFY message
        when the notification is related to a HID, and possibly in
        the STATUS-RESPONSE message to convey additional HIDs that
        are valid for a stream when there are more than one.  It
        consists of the PCode and PBytes bytes prepended to a HID;
        HIDs were described in Section 4 (page 76).
        The RHID parameter (PCode = 14) is used in conjunction with
        the FDx option to convey the HID that is to be used in the
        reverse direction.  It consists of the PCode and PBytes
        bytes prepended to a HID.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode | 4 | HID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 27.  HID & RHID
     4.2.2.7.         MulticastAddress
        The MulticastAddress parameter (PCode = 6) is an optional
        parameter that is used, when setting up a network level
        multicast group, to communicate an IP and/or local network
        multicast address to the next-hop agents that should become
        members of the group.
           LocalNetBytes is the length of the Local Net Multicast
           Address.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 6 | PBytes | LocalNetBytes | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Multicast Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Local Net Multicast Address : Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 28.  MulticastAddress
           IP Multicast Address is described in [6].  This field is
           zero (0) if no IP multicast address is known or is
           applicable.  The block of addresses 224.1.0.0 -
           224.1.255.255 has been allocated for use by ST.
           Local Net Multicast Address is the multicast address to
           be used on the local network.  It corresponds to the IP
           Multicast Address when the latter is non-zero.
     4.2.2.8.         Name & RName
        Each stream is uniquely (i.e., globally) identified by a
        Name.  A Name is created by the origin host ST agent and is
        composed of 1) a 16-bit number chosen to make the Name
        unique within the agent, 2) the IP address of the origin ST
        agent, and 3) a 32-bit timestamp.  If the origin has
        multiple IP addresses, then any that can be used to reach
        target may be used in the Name.  The intent is that the
        <Unique ID, IP Address> tuple be unique for the lifetime of
        the stream.  It is suggested that to increase robustness a
        Unique ID value not be reused for a period of time on the
        order of 5 minutes.
        The Timestamp is included both to make the Name unique over
        long intervals (e.g., forever) for purposes of network
        management and accounting/billing, and to protect against
        failure of an ST agent that causes knowledge of active
        Unique IDs to be lost.  The assumption is that all ST agents
        have access to some "clock".  If this is not the case, the
        agent should have access to some form of non-volatile memory
        in which it can store some number that at least gets
        incremented per restart.
        The Name parameter (PCode = 7) is used in most control
        messages to identify a stream.
        The RName parameter (PCode = 15) is used in conjunction with
        the FDx option to convey the Name of the reverse stream in
        an ACCEPT message.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode | 12 | Unique ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 29.  Name & RName
     4.2.2.9.         NextHopIPAddress
        The NextHopIPAddress parameter (PCode = 8) is an optional
        parameter of NOTIFY (RouteBack) or REFUSE (RouteInconsist or
        RouteLoop) and contains the IP address of a suggested next-
        hop ST agent.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 8 | 8 | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | next-hop IP address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 30.  NextHopIPAddress
     4.2.2.10.        Origin
        The Origin parameter (PCode = 9) is used to identify the
        origin of the stream, the next higher protocol, and the SAP
        being used in conjunction with that protocol.
           NextPcol is an 8-bit field used in demultiplexing
           operations to identify the protocol to be used above ST.
           The values of NextPcol are in the same number space as
           the IP Header's Protocol field and are consequently
           defined in the Assigned Numbers RFC [18].
           OriginSAPBytes specifies the length of the OriginSAP,
           exclusive of any padding required to maintain 32-bit
           alignment.
           OriginIPAddress is (one of) the IP address of the origin.
           OriginSAP identifies the origin's SAP associated with the
           NextPcol protocol.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 9 | PBytes | NextPcol |OriginSAPBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OriginIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

OriginSAP : Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 31.  Origin
     4.2.2.11.        OriginTimestamp
        The OriginTimestamp parameter (PCode = 10) is used to
        indicate the time at which the control message was sent.
        The units and format of the timestamp is that defined in the
        NTP protocol specification [13].  Note that discontinuities
        over leap seconds are expected.
        Note that the time synchronization implied by the use of
        such a parameter is the subject of systems management
        functions not described in this memo, e.g., NTP.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 10 | 12 | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- Timestamp -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 32.  OriginTimestamp
     4.2.2.12.        ReasonCode
        Several errors may occur during protocol processing.  All ST
        error codes are taken from a single number space.  The
        currently defined values and their meaning is presented in
        the list below.  Note that new error codes may be defined
        from time to time.  All implementations are expected to
        handle new codes in a graceful manner.  If an unknown
        ReasonCode is encountered, it should be assumed to be fatal.
                0                   1
                0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               |          ReasonCode           |
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     Figure 33.  ReasonCode
              Name       Value                 Meaning
        ---------------- ----- ---------------------------------------
        AcceptTimeout      2   An Accept has not been
                               acknowledged.
        AccessDenied       3   Access denied.
        AckUnexpected      4   An unexpected ACK was received.
        ApplAbort          5   The application aborted the stream
                               abnormally.
        ApplDisconnect     6   The application closed the stream
                               normally.
        AuthentFailed      7   The authentication function
                               failed.
        CantGetResrc       8   Unable to acquire (additional)
                               resources.
        CantRelResrc       9   Unable to release excess
                               resources.
        CksumBadCtl       10   A received control PDU has a bad
                               message checksum.
        CksumBadST        11   A received PDU has a bad ST Header
                               checksum.
        DropExcdDly       12   A received PDU was dropped because
                               it could not be processed within
                               the delay specification.
        DropExcdMTU       13   A received PDU was dropped because
                               its size exceeds the MTU.
        DropFailAgt       14   A received PDU was dropped because
                               of a failed ST agent.
        DropFailHst       15   A received PDU was dropped because
                               of a host failure.
        DropFailIfc       16   A received PDU was dropped because
                               of a broken interface.
        DropFailNet       17   A received PDU was dropped because
                               of a network failure.
              Name       Value                 Meaning
        ---------------- ----- ---------------------------------------
        DropLimits        18   A received PDU was dropped because
                               it exceeds the resource limits for
                               its stream.
        DropNoResrc       19   A received PDU was dropped due to
                               no available resources (including
                               precedence).
        DropNoRoute       20   A received PDU was dropped because
                               of no available route.
        DropPriLow        21   A received PDU was dropped because
                               it has a priority too low to be
                               processed.
        DuplicateIgn      22   A received control PDU is a
                               duplicate and is being
                               acknowledged.
        DuplicateTarget   23   A received control PDU contains a
                               duplicate target, or an attempt to
                               add an existing target.
        ErrorUnknown       1   An error not contained in this
                               list has been detected.
        failure          N/A   An abbreviation used in the text
                               for any of the more specific
                               errors:  DropFailAgt, DropFailHst,
                               DropFailIfc, DropFailNet,
                               IntfcFailure, NetworkFailure,
                               STAgentFailure, FailureRecovery.
        FailureRecovery   24   A notification that recovery is
                               being attempted.
        FlowVerBad        25   A received control PDU has a
                               FlowSpec Version Number that is
                               not supported.
        GroupUnknown      26   A received control PDU contains an
                               unknown Group Name.
        HIDNegFails       28   HID negotiation failed.
        HIDUnknown        29   A received control PDU contains an
                               unknown HID.
              Name       Value                 Meaning
        ---------------- ----- ---------------------------------------
        InconsistHID      30   An inconsistency has been detected
                               with a stream Name and
                               corresponding HID.
        InconsistGroup    31   An inconsistency has been detected
                               with the streams forming a group.
        IntfcFailure      32   A network interface failure has
                               been detected.
        InvalidHID        33   A received ST PDU contains an
                               invalid HID.
        InvalidSender     34   A received control PDU has an
                               invalid SenderIPAddress field.
        InvalidTotByt     35   A received control PDU has an
                               invalid TotalBytes field.
        LnkRefUnknown     36   A received control PDU contains an
                               unknown LnkReference.
        NameUnknown       37   A received control PDU contains an
                               unknown stream Name.
        NetworkFailure    38   A network failure has been
                               detected.
        NoError            0   No error has occurred.
        NoRouteToAgent    39   Cannot find a route to an ST
                               agent.
        NoRouteToDest     40   Cannot find a route to the
                               destination.
        NoRouteToHost     41   Cannot find a route to a host.
        NoRouteToNet      42   Cannot find a route to a network.
        OpCodeUnknown     43   A received control PDU has an
                               invalid OpCode field.
        PCodeUnknown      44   A received control PDU has a
                               parameter with an invalid PCode.
        ParmValueBad      45   A received control PDU contains an
                               invalid parameter value.
              Name       Value                 Meaning
        ---------------- ----- ---------------------------------------
        PcolIdUnknown     46   A received control PDU contains an
                               unknown next-higher layer protocol
                               identifier.
        ProtocolError     47   A protocol error was detected.
        PTPError          48   Multiple targets were specified
                               for a stream created with the PTP
                               option.
        RefUnknown        49   A received control PDU contains an
                               unknown Reference.
        RestartLocal      50   The local ST agent has recently
                               restarted.
        RemoteRestart     51   The remote ST agent has recently
                               restarted.
        RetransTimeout    52   An acknowledgment to a control
                               message has not been received
                               after several retransmissions.
        RouteBack         53   The routing function indicates
                               that the route to the next-hop is
                               through the same interface as the
                               previous-hop and is not the
                               previous-hop.
        RouteInconsist    54   A routing inconsistency has been
                               detected, e.g., a route loop.
        RouteLoop         55   A CONNECT was received that
                               specified an existing target.
        SAPUnknown        56   A received control PDU contains an
                               unknown next-higher layer SAP
                               (port).
        STAgentFailure    57   An ST agent failure has been
                               detected.
        StreamExists      58   A stream with the given Name or
                               HID already exists.
        StreamPreempted   59   The stream has been preempted by
                               one with a higher precedence.
              Name       Value                 Meaning
        ---------------- ----- ---------------------------------------
        STVerBad          60   A received PDU is not ST Version
                               2.
        TooManyHIDs       61   Attempt to add more HIDs to a
                               stream than the implementation
                               supports.
        TruncatedCtl      62   A received control PDU is shorter
                               than expected.
        TruncatedPDU      63   A received ST PDU is shorter than
                               the ST Header indicates.
        UserDataSize      64   The UserData parameter is too
                               large to permit a control message
                               to fit into a network's MTU.
     4.2.2.13.        RecordRoute
        The RecordRoute parameter (PCode = 11) may be used to
        request that the route between the origin and a target be
        recorded and returned to the agent specified in the
        DetectorIPAddress field.
        FreeOffset is the offset to the position where the next
        next-hop IP address should be inserted.  It is initialized
        to four (4) and incremented by four each time an agent
        inserts its IP address.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 11 | PBytes | 0 | FreeOffset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | next-hop IP address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

... :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | next-hop IP address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 34.  RecordRoute
     4.2.2.14.        SrcRoute
        The SrcRoute parameter is used, in the Target structure
        shown in Figure 36, to specify the IP addresses of the ST
        agents through which the stream to the target should pass.
        There are two forms of the option, distinguished by the
        PCode.
        With loose source route (PCode = 18) each ST agent first
        examines the first next-hop IP address in the option.  If
        the address is (one of) the address of the current ST agent,
        that entry is removed, and the PBytes field reduced by four
        (4).  If the resulting PBytes field contains 4 (i.e., there
        are no more next-hop IP addresses) the parameter is removed
        from the Target.  In either case, the Target's TargetBytes
        field and the TargetList's PBytes field must be reduced
        accordingly.  The ST agent then routes toward the first
        next-hop IP address in the option, if one exists, or toward
        the target otherwise.  Note that the target's IP address is
        not included as the last entry in the list.
        With a strict source route (PCode = 19) each ST agent first
        examines the first next-hop IP address in the option.  If
        the address is not (one of) the address of the current ST
        agent, a routing error has occurred and should be reported
        with the appropriate reason code.  Otherwise that entry is
        removed, and the PBytes field reduced by four (4).  If the
        resulting PBytes field contains 4 (i.e., there are no more
        next-hop IP addresses) the parameter is removed from the
        Target.  In either case, the Target's TargetBytes field and
        the TargetList's PBytes field must be reduced accordingly.
        The ST agent then routes toward the first next-hop IP
        address in the option, if one exists, or toward the target
        otherwise.  Note that the target's IP address is not
        included as the last entry in the list.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode | 4+4*N | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | next-hop IP address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

... :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | next-hop IP address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 35.  SrcRoute
        Since it is possible that a single hop between ST agents is
        actually composed of multiple IP hops using IP
        encapsulation, it might be necessary to also specify an IP
        source routing option.  Two additional PCodes are used in
        this case.  See [15] for a description of IP routing
        options.
        An IP Loose Source Route (PCode = 16) indicates that PDUs
        for the next-hop ST agent should be encapsulated in IP and
        that the IP datagram should contain an IP Loose Source Route
        constructed from the list of IP router addresses contained
        in this option.
        An IP Strict Source Route (PCode = 17) is similarly used
        when the corresponding IP Strict Source Route option should
        be constructed.
        Consequently, the "routing parameter" may consist of a
        sequence of one or more separate parameters with PCodes 16,
        17, 18, or 19.
     4.2.2.15.        Target and TargetList
        Several control messages use a parameter called TargetList
        (PCode = 20), which contains information about the targets
        to which the message pertains.  For each Target in the
        TargetList, the information includes the IP addresses of the
        target, the SAP applicable to the next higher layer
        protocol, the length of the SAP (SAPBytes), and zero or more
        optional SrcRoute parameters;  see Section 4.2.2.14 (page
        95).  Consequently, a Target structure can be of variable
        length.  Each entry has the format shown in Figure 36.
        The optional SrcRoute parameter is only meaningful in a
        CONNECT messages;  if present in other messages, they are
        ignored.  Note that the presence of SrcRoute parameter(s)
        reduces the number of Targets that can be contained in a
        TargetList since the maximum size of a TargetList is 256
        bytes.  Consequently an implementation should be prepared to
        accept multiple TargetLists in a single message.
           TargetIPAddress is the IP Address of the Target.
           TargetBytes is the length of the Target structure,
           beginning with the TargetIPAddress and including any
           SrcRoute Parameter(s).
           SAPBytes is the length of the SAP, excluding any padding
           required to maintain 32-bit alignment.  I.e.,
           there would be no padding required for SAPs with lengths
           of 2, 6, etc., bytes.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TargetIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TargetBytes | SAPBytes | : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+-+-+-+-+-+-+-+-+

SAP : Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

SrcRoute Parameter(s) :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 36.  Target
        We assume that the ST agents must know the maximum packet
        size of the networks to which they are connected (the MTU),
        and those maximum sizes will restrict the number of targets
        that can be specified in control messages.  We feel that
        this is not a serious drawback.  High bandwidth networks
        such as the Ethernet or the Terrestrial Wideband network
        support packet sizes large enough to allow well over one
        hundred targets to be specified, and we feel that
        conferences with a larger number of participants will not
        occur for quite some time.  Furthermore, we expect that
        future higher bandwidth networks will allow even larger
        packet sizes.  It may be desirable to send ST voice data
        packets in individual B-ISDN ATM cells, which are small, but
        network services on ATM will provide "adaptation layers" to
        implement network-level fragmentation that may be used to
        carry larger ST control messages.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 20 | PBytes | TargetCount = N | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Target 1 :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

... :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Target N :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 37.  TargetList
        If a message must pass across a network whose maximum packet
        size is too small, the message must be broken up into
        multiple messages, each of which carries part of the
        TargetList.  The function of the message can still be
        performed even if the message is so partitioned.  The effect
        in this partitioning is to compromise the performance, but
        still allows proper operation.  For example, if a CONNECT
        message were partitioned, the first CONNECT would establish
        the stream, and the rest of the CONNECTs would be processed
        as additions to the first.  The routing decisions might
        suffer, however, since they would be made on partial
        information.  Nevertheless, the stream would be created.
     4.2.2.16.        UserData
        The UserData parameter (PCode = 21) is an optional parameter
        that may be used by the next higher protocol or an
        application to convey arbitrary information to its peers.
        Note that since the size of control messages is limited by
        the smallest MTU in the path to the target(s), the maximum
        size of this parameter cannot be specified a priori.  If the
        parameter is too large for some network's MTU, a
        UserDataSize error will occur.  The parameter must be padded
        to a multiple of 32 bits.
           UserBytes specifies the number of valid UserInformation
           bytes.
           UserInformation is arbitrary data meaningful to the next
           higher protocol layer or application.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCode = 21 | PBytes | UserBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

UserInformation : Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 38.  UserData

ST Control Message PDUs

     Each control message is described in a following section.  See
     Appendix 1 (page 147) for an explanation of the notation.
     4.2.3.1.         ACCEPT
        ACCEPT (OpCode = 1) is issued by a target as a positive
        response to a CONNECT message.  It implies that the target
        is prepared to accept data from the origin along the stream
        that was established by the CONNECT.  The ACCEPT includes
        the FlowSpec that contains the cumulative information that
        was calculated by the intervening ST agents as the CONNECT
        made its way from the origin to the target, as well as any
        modifications made by the application at the target.  The
        ACCEPT is relayed by the ST agents from the target to the
        origin along the path established by the CONNECT but in the
        reverse direction.  The ACCEPT must be acknowledged with an
        ACK at each hop.
        The FlowSpec is not modified on this trip from the target
        back to the origin.  Since the cumulative FlowSpec
        information can be different for different targets, no
        attempt is made to combine the ACCEPTs from the various
        targets.  The TargetList included in each ACCEPT contains
        the IP address of only the target that issued the ACCEPT.
        Any SrcRoute parameters in the TargetList are ignored.
        Since an ACCEPT might be the first response from a next-hop
        on a control link (due to network reordering), the SVLId
        field may be the first source of the Virtual Link Identifier
        to be used in the RVLId field of subsequent control messages
        sent to that next-hop.
        When the FDx option has been selected to setup a second
        stream in the reverse direction, the ACCEPT will contain
        both RFlowSpec and RName parameters.  Each agent should
        update the state tables for the reverse stream with this
        information.
           TSR (bits 14 and 15) specifies the target's response for
           the use of data packet timestamps; see Section 4 (page
           76).  Its values and semantics are:
              00  Not implemented.
              01  No timestamps are permitted.
              10  Timestamps must always be present.
              11  Timestamps may optionally be present.
           Reference contains a number assigned by the agent sending
           the ACCEPT for use in the acknowledging ACK.
           LnkReference is the Reference number from the
           corresponding CONNECT or CHANGE.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 1 | 0 |TSR| TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RecordRoute Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RFlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! RName Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

UserData Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 39.  ACCEPT Control Message
     4.2.3.2.         ACK
        ACK (OpCode = 2) is used to acknowledge a request.  The
        Reference in the header is the Reference number of the
        control message being acknowledged.
        Since a ACK might be the first response from a next-hop on a
        control link, the SVLId field may be the first source of the
        Virtual Link Identifier to be used in the RVLId field of
        subsequent control messages sent to that next-hop.
           ReasonCode is usually NoError, but other possibilities
           exist, e.g., DuplicateIgn.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 2 | 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | ReasonCode | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 40.  ACK Control Message
     4.2.3.3.         CHANGE-REQUEST
        CHANGE-REQUEST (OpCode = 4) is used by an intermediate or
        target agent to request that the origin change the FlowSpec
        of an established stream.  The CHANGE-REQUEST message is
        propagated hop-by-hop to the origin, with an ACK at each
        hop.
        Any SrcRoute parameters in the targets of the TargetList are
        ignored.
           G (bit 8) is used to request a global, stream-wide
           change;  the TargetList parameter may be omitted when the
           G bit is specified.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 4 |G| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

UserData Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 41.  CHANGE-REQUEST Control Message
     4.2.3.4.         CHANGE
        CHANGE (OpCode = 3) is used to change the FlowSpec of an
        established stream.  Parameters are the same as for CONNECT
        but the TargetList is not required.  The CHANGE message is
        processed similarly to the CONNECT message, except that it
        travels along the path of an established stream.
        If the change to the FlowSpec is in a direction that makes
        fewer demands of the involved networks, then the change has
        a high probability of success along the path of the
        established stream.  Each ST agent receiving the CHANGE
        message makes the necessary requested changes to the network
        resource allocations, and if successful, propagates the
        CHANGE message along the established paths.  If the change
        cannot be made then the ST agent must recover using
        DISCONNECT and REFUSE messages as in the case of a network
        failure.  Note that a failure to change the resources
        requested for a specific target(s) should not cause other
        targets in the stream to be deleted.  The CHANGE must be
        ACKed.
        If the CHANGE is a result of a CHANGE-REQUEST the
        LnkReference field of the CHANGE will contain the value from
        the Reference field of the CHANGE-REQUEST.
        It is recommended that the origin only have one outstanding
        CHANGE per target;  if the application requests more that
        one to be outstanding at a time, it is the application's
        responsibility to deal with any sequencing problems that may
        arise.
        Any SrcRoute parameters in the targets of the
        TargetListParameter are ignored.
           G (bit 8) is used to request a global, stream-wide
           change;  the TargetList parameter may be omitted when the
           G bit is specified.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 3 |G| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

UserData Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 42.  CHANGE Control Message
     4.2.3.5.         CONNECT
        CONNECT (OpCode = 5) requests the setup of a new stream or
        an addition to or recovery of an existing stream.  Only the
        origin can issue the initial set of CONNECTs to setup a
        stream, and the first CONNECT to each next-hop is used to
        convey the initial suggestion for a HID.  If the stream's
        data packets will be sent to some set of next-hop ST agents
        by multicast then the CONNECTs to that set must suggest the
        same HID.  Otherwise, the HIDs in the various CONNECTs can
        be different.
        The CONNECT message must fit within the maximum allowable
        packet size (MTU) for the intervening network.  If a CONNECT
        message is too large, it must be fragmented into multiple
        CONNECT messages by partitioning the TargetList; see Section
        4.2 (page 77).  Any UserData parameter will be replicated in
        each fragment for delivery to all targets.
        The next-hop can initially respond with any of the following
        five responses:
         1  ERROR-IN-REQUEST, which implies that the CONNECT was
            not valid and has been ignored,
         2  ACK, which implies that the CONNECT with the H bit not
            set was valid and is being processed,
         3  HID-APPROVE, which implies that the CONNECT with the
            H bit set was valid, and the suggested HID can be
            used or was deferred,
         4  HID-REJECT, which implies that the CONNECT with the H
            bit set was valid but the suggested HID cannot be
            used and another must be suggested in a subsequent
            HID-CHANGE message, or
         5  REFUSE, which implies that the CONNECT was valid but
            the included list of targets in the REFUSE cannot be
            processed for the stated reason.
        The next-hop will later relay back either an ACCEPT or
        REFUSE from each target not already specified in the REFUSE
        of case 5 above (note multiple targets may be included in a
        single REFUSE message).
        An intermediate ST agent that receives a CONNECT selects the
        next-hop ST agents, partitions the TargetList accordingly,
        reserves network resources in the direction toward the
        next-hop, updating the FlowSpec accordingly (see Section
        4.2.2.3 (page 81)), selects a proposed HID for each next-
        hop, and sends the resulting CONNECTs.
        If the intermediate ST agent that is processing a CONNECT
        fails to find a route to a target, then it responds with a
        REFUSE with the appropriate reason code.  If the next-hop to
        a target is by way of the network from which it received the
        CONNECT, then it sends a NOTIFY with the appropriate reason
        code (RouteBack).  In either case, the TargetList specifies
        the affected targets.  The intermediate ST agent will only
        route to and propagate a CONNECT to the targets for which it
        does not issue either an ERROR-IN-REQUEST or a REFUSE.
        The processing of a received CONNECT message requires care
        to avoid routing loops that could result from delays in
        propagating routing information among ST agents.  If a
        received CONNECT contains a new Name, a new stream should be
        created (unless the Virtual Link Identifier matches a known
        link in which case an ERROR-IN-REQUEST should be sent).  If
        the Name is known, there are four cases:
         1  the Virtual Link Identifier matches and the Target
            matches a current Target -- the duplicate target
            should be ignored.
         2  the Virtual Link Identifier matches but the Target is
            new -- the stream should be expanded to include the
            new target.
         3  the Virtual Link Identifier differs and the Target
            matches a current Target -- an ERROR-IN-REQUEST
            message should be sent specifying that the target is
            involved in a routing loop.  If a reroute, the old
            path will eventually timeout and send a DISCONNECT;
            a subsequent retransmission of the rerouted CONNECT
            will then be processed under case 2 above.
         4  the Virtual Link Identifier differs but the Target is
            new -- a new (instance of the) stream should be
            created for the target that is deliberately part of
            a loop using a SrcRoute parameter.
        Note that the test for a known or matching Target includes
        comparing any SrcRoute parameter that might be present.
        Option bits are specified by either the origin's service
        user or by an intermediate agent, depending on the specific
        option.  Bits not specified below are currently unspecified,
        and should be set to zero (0) by the origin agent and not
        changed by other agents unless those agents know their
        meaning.
           H (bit 8) is used for the HID Field option; see Section
           3.6.1 (page 44).  It is set to one (1) only if the HID
           field contains either zero (when the HID selection is
           being deferred), or the proposed HID.  This bit is zero
           (0) if the HID field does not contain valid data and
           should be ignored.
           P (bit 9) is used for the PTP option; see Section 3.6.2
           (page 44).
           S (bit 10) is used for the NoRecovery option; see Section
           3.6.4 (page 46).
           TSP (bits 14 and 15) specifies the origin's proposal for
           the use of data packet timestamps; see Section 4 (page
           76).  Its values and semantics are:
              00  No proposal.
              01  Cannot insert timestamps.
              10  Must always insert timestamps.
              11  Can insert timestamps if requested.
           RVLId, the receiver's Virtual Link Identifier, is set to
           zero in all CONNECT messages until its value arrives in
           the SVLId field of an acknowledgment to the CONNECT.
           SVLId, the sender's Virtual Link Identifier, is set to a
           value chosen by each hop to facilitate efficient
           dispatching of subsequent control messages.
           HID is the identifier that will be used with data packets
           moving through the stream in the direction from the
           origin to the targets.  It is a hop-by-hop shorthand
           identifier for the stream's Name, and is chosen by each
           agent for the branch to the next-hop agents.  The
           contents of the HID field are only valid, and a HID-
           REJECT or HID-APPROVE reply may only be sent, when the
           HID Field option (H bit) is set (1).  If the HID Field
           option is specified and the proposed HID is zero, the
           selection of the HID is deferred to the receiving next-
           hop agent.  If the HID Field option is not set (H bit is
           0), then the HID field does not contain valid data and
           should be ignored;  see Section 3.6.1 (page 44).
           TargetList is the list of IP addresses of the target
           processes.  It is of arbitrary size up to the maximum
           allowed for packets traveling across the specific
           network.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 5 |H|P|S| 0 |TSP| TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId/0 | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | HID/0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Origin Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter(s) :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Group Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MulticastAddress Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RecordRoute Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RFlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RGroup Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! RHID Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

UserData Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 43.  CONNECT Control Message
     4.2.3.6.         DISCONNECT
        DISCONNECT (OpCode = 6) is used by an origin to tear down an
        established stream or part of a stream, or by an
        intermediate agent that detects a failure between itself and
        its previous-hop, as distinguished by the ReasonCode.  The
        DISCONNECT message specifies the list of targets that are to
        be disconnected.  An ACK is required in response to a
        DISCONNECT message.  The DISCONNECT message is propagated
        all the way to the specified targets.  The targets are
        expected to terminate their participation in the stream.
        Note that in the case of a failure it may be advantageous to
        retain state information as the stream should be repaired
        shortly;  see Section 3.7.2 (page 52).
           G (bit 8) is used to request a DISCONNECT of all the
           stream's targets; the TargetList parameter may be omitted
           when the G bit is set (1).
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 6 |G| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | ReasonCode | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

UserData Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 44.  DISCONNECT Control Message
     4.2.3.7.         ERROR-IN-REQUEST
        ERROR-IN-REQUEST (OpCode = 7) is sent in acknowledgment to a
        request in which an error is detected.  No action is taken
        on the erroneous request and no state information for the
        stream is retained.  Consequently it is appropriate for the
        SVLId to be zero (0).  No ACK is expected.
        An ERROR-IN-REQUEST is never sent in response to either an
        ERROR-IN-REQUEST or an ERROR-IN-RESPONSE;  however, the
        event should be logged for diagnostic purposes.  The
        receiver of an ERROR-IN-REQUEST is encouraged to try again
        without waiting for a retransmission timeout.
           Reference is the Reference number of the erroneous
           request.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 7 | 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId/0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | ReasonCode | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ErroredPDU :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 45.  ERROR-IN-REQUEST Control Message
     4.2.3.8.         ERROR-IN-RESPONSE
        ERROR-IN-RESPONSE (OpCode = 8) is sent in acknowledgment to
        a response in which an error is detected.  No ACK is
        expected.  Action taken by the requester and responder will
        vary with the nature of the request.
        An ERROR-IN-REQUEST is never sent in response to either an
        ERROR-IN-REQUEST or an ERROR-IN-RESPONSE;  however, the
        event should be logged for diagnostic purposes.  The
        receiver of an ERROR-IN-RESPONSE is encouraged to try again
        without waiting for a retransmission timeout.
        Reference identifies the erroneous response.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 8 | 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | ReasonCode | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ErroredPDU :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 46.  ERROR-IN-RESPONSE Control Message
     4.2.3.9.         HELLO
        HELLO (OpCode = 9) is used as part of the ST failure
        detection mechanism; see Section 3.7.1.2 (page 49).
           R (bit 8) is used for the Restarted bit.
           Reference is non-zero to inform the receiver that an ACK
           should be promptly sent so that the sender can update its
           round-trip time estimates.  If the Reference is zero, no
           ACK should be sent.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 9 |R| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId/0 | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference/0 | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HelloTimer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! OriginTimestamp ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 47.  HELLO Control Message
     4.2.3.10.        HID-APPROVE
        HID-APPROVE (OpCode = 10) is used by the agent that is
        responding to either a CONNECT or HID-CHANGE to agree to
        either use the proposed HID or to the addition or deletion
        of the specified HID.  In all cases but deletion, the newly
        approved HID is returned in the HID field;  for deletion,
        the HID field must be set to zero.  The HID-APPROVE is the
        acknowledgment of a CONNECT or HID-CHANGE.
        The optional FreeHIDs parameter provides the previous-hop
        agent with hints about what other HIDs are acceptable in
        case a multicast HID is being negotiated;  see Section
        4.2.2.4 (page 84).
        Since a HID-APPROVE might be the first response from a
        next-hop on a control link, the SVLId field may be the first
        source of the Virtual Link Identifier to be used in the
        RVLId field of subsequent control messages sent to that
        next-hop.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 10 | 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | HID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FreeHIDs Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 48.  HID-APPROVE Control Message
     4.2.3.11.        HID-CHANGE-REQUEST
        HID-CHANGE-REQUEST (OpCode = 12) is used by a next-hop agent
        that would like, for administrative reasons, to change the
        HID that is in use.  The receiving previous-hop agent
        acknowledges the request by either an ERROR-IN-REQUEST if it
        is unwilling to make the requested change, or with a HID-
        CHANGE if it can accommodate the request.
           A (bit 8) is used to indicate that the specified HID
           should be included in the set of HIDs for the specified
           Name.  When a HID is added, the acknowledging HID-APPROVE
           should contain a HID field whose contents is the HID just
           added.
           D (bit 9) is used to indicate that the specified HID
           should be removed in the set of HIDs for the specified
           Name.  When a HID is deleted, the acknowledging HID-
           APPROVE should contain a HID field whose contents is
           zero.  Note that the Reference field may be used to
           determine the HID that has been deleted.
           If neither bit is set, the specified HID should replace
           that currently in use with the specified Name.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 12 |A|D| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | HID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 49.  HID-CHANGE-REQUEST Control Message
     4.2.3.12.        HID-CHANGE
        HID-CHANGE (OpCode = 11) is used by the agent that issued a
        CONNECT and received a HID-REJECT to attempt to negotiate a
        suitable HID.  The HID in the HID-CHANGE message must be
        different from that in the CONNECT, or any previous HID-
        CHANGE messages for the given Name.  The agent receiving the
        HID-CHANGE must respond with a HID-APPROVE if the new HID is
        suitable, or a HID-REJECT if it is not.  In case of an
        error, either an ERROR-IN-REQUEST or a REFUSE may be
        returned as an acknowledgment.
        Since an agent may send CONNECT messages with the same HID
        to several next-hops in order to use multicast data
        transfer, any HID-CHANGE must also be sent to the same set
        of next-hops.  Therefore, a next-hop agent must be prepared
        to receive a HID-CHANGE before or after it has sent a HID-
        APPROVE response to the CONNECT or a previous HID-CHANGE.
        Only the last HID-CHANGE is relevant.  The previous-hop
        agent will ignore HID-APPROVE or HID-REJECT messages to
        previous CONNECT or HID-CHANGE messages.
        A DISCONNECT can be sent instead of a HID-CHANGE, or a
        REFUSE can be sent instead of a HID-APPROVE or HID-REJECT,
        to terminate fatally the HID negotiation and the agent's
        knowledge of the stream.
        The A and D bits are used to change a HID, e.g., when adding
        a new next-hop to a multicast group, in such a way that data
        packets that are flowing through the network will not be
        mishandled due to a race condition in processing the HID-
        CHANGE messages between the previous-hop and its next-hops.
        An implementation may choose to limit the number of
        simultaneous HIDs associated with a stream, but must allow
        at least two.
           A (bit 8) is used to indicate that the specified HID
           should be included in the set of HIDs for the specified
           Name.  When a HID is added, the acknowledging HID-APPROVE
           should contain a HID field whose contents is the HID just
           added.
           D (bit 9) is used to indicate that the specified HID
           should be removed from the set of HIDs for the specified
           Name.  When a HID is deleted, the acknowledging HID-
           APPROVE should contain a HID field whose contents is
           zero.  Note that the Reference field may be used to
           determine the HID that has been deleted.
           If neither bit is set, the specified HID should replace
           that currently in use for the specified Name.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 11 |A|D| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | HID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 50.  HID-CHANGE Control Message
     4.2.3.13.        HID-REJECT
        HID-REJECT (OpCode = 13) is used as an acknowledgment that a
        CONNECT or HID-CHANGE was received and is being processed,
        but means that the HID contained in the CONNECT or HID-
        CHANGE is not acceptable.  Upon receipt of this message the
        agent that issued the CONNECT or HID-CHANGE must now issue a
        HID-CHANGE to attempt to find a suitable HID.  The HID-
        CHANGE can cause another HID-REJECT but eventually the HID-
        CHANGE must be acknowledged with a HID-APPROVE to end
        successfully the HID negotiation.  The agent that issued the
        HID-REJECT may not issue an ACCEPT before it has found an
        acceptable HID.
        Since a HID-REJECT might be the first response from a next-
        hop on a control link, the SVLId field may be the first
        source of the Virtual Link Identifier to be used in the
        RVLId field of subsequent control messages sent to that
        next-hop.
        Either agent may terminate the negotiation by issuing either
        a DISCONNECT or a REROUTE.  The agent that issued the HID-
        REJECT may issue a REFUSE, or REROUTE at any time after the
        HID-REJECT.  In this case, the stream cannot be created, the
        HID negotiation need not proceed, and the previous-hop need
        not transmit any further messages;  any further messages
        that are received should be ignored.
        The optional FreeHIDs parameter provides the previous-hop
        agent with hints about what HIDs would have been acceptable;
        see Section 4.2.2.4 (page 84).
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 13 | 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | RejectedHID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FreeHIDs Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 51.  HID-REJECT Control Message
     4.2.3.14.        NOTIFY
        NOTIFY (OpCode = 14) is issued by a an agent to inform other
        agents, the origin, or target(s) of events that may be
        significant.  The action taken by the receiver of a NOTIFY
        depends on the ReasonCode.  Possible events are suspected
        routing problems or resource allocation changes that occur
        after a stream has been established.  These changes occur
        when network components fail and when competing streams
        preempt resources previously reserved by a lower precedence
        stream.  We also anticipate that NOTIFY can be used in the
        future when additional resources become available, as is the
        case when network components recover or when higher
        precedence streams are deleted.
        NOTIFY may contain a FlowSpec that reflects that revised
        guarantee that can be promised to the stream.  NOTIFY may
        also identify those targets that are affected by the change.
        In this way, NOTIFY is similar to ACCEPT.
        NOTIFY may be relayed by the ST agents back to the origin,
        along the path established by the CONNECT but in the reverse
        direction.  It is up to the origin to decide whether a
        CHANGE should be submitted.
        When NOTIFY is received at the origin, the application
        should be notified of the target and the change in resources
        allocated along the path to it, as specified in the FlowSpec
        contained in the NOTIFY message.  The application may then
        use the information to either adjust or terminate the
        portion of the stream to each affected target.
        The NOTIFY may be propagated beyond the previous-hop or
        next-hop agent; it must be acknowledged with an ACK.
           Reference contains a number assigned by the agent sending
           the NOTIFY for use in the acknowledging ACK.
           ReasonCode identifies the reason for the notification.
           LnkReference, when non-zero, is the Reference number from
           a command that is the subject of the notification.
           HID is present when the notification is related to a HID.
           Name is present when the notification is related to a
           stream.
           NextHopIPAddress is an optional parameter and contains
           the IP address of a suggested next-hop ST agent.
           TargetList is present when the notification is related to
           one or more targets.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 14 | 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | ReasonCode | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ErroredPDU :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! HID Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! NextHopIPAddress Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RecordRoute Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 52.  NOTIFY Control Message
     4.2.3.15.        REFUSE
        REFUSE (OpCode = 15) is issued by a target that either does
        not wish to accept a CONNECT message or wishes to remove
        itself from an established stream.  It might also be issued
        by an intermediate agent in response to a CONNECT or CHANGE
        either to terminate fatally a failing HID negotiation, to
        terminate a routing loop, or when a satisfactory next-hop to
        a target cannot be found.  It may also be a separate command
        when an existing stream has been preempted by a higher
        precedence stream or an agent detects the failure of a
        previous-hop, next-hop, or the network between them.  In all
        cases, the TargetList specifies the targets that are
        affected by the condition.  Each REFUSE must be acknowledged
        by an ACK.
        The REFUSE is relayed by the agents from the originating
        agent to the origin (or intermediate agent that created the
        CONNECT or CHANGE) along the path traced by the CONNECT.
        The agent receiving the REFUSE will process it differently
        depending on the condition that caused it, as specified in
        the ReasonCode field.  In some cases, such as if a next-hop
        cannot obtain resources, the agent can release any resources
        reserved exclusively for transmissions in the stream in
        question to the target specified in the TargetList, and the
        previous-hop can attempt to find an alternate route.  In
        some cases, such as a routing failure, the previous-hop
        cannot determine where the failure occurred, and must
        propagate the REFUSE back to the origin, which can attempt
        recovery of the stream by issuing a new CONNECT.
        No special effort is made to combine multiple REFUSE
        messages since it is considered most unlikely that separate
        REFUSEs will happen to both pass through an agent at the
        same time and be easily combined, e.g., have identical
        ReasonCodes and parameters.
        Since a REFUSE might be the first response from a next-hop
        on a control link, the SVLId field may be the first source
        of the Virtual Link Identifier to be used in the RVLId field
        of subsequent control messages sent to that next-hop.
           Reference contains a number assigned by the agent sending
           the REFUSE for use in the acknowledging ACK.
           LnkReference is either the Reference number from the
           corresponding CONNECT or CHANGE, if it is the result of
           such a message, or zero when the REFUSE was originated as
           a separate command.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 15 | 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId | SVLId | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | ReasonCode | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DetectorIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ErroredPDU :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RecordRoute Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

UserData Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 53.  REFUSE Control Message
     4.2.3.16.        STATUS
        STATUS (OpCode = 16) is used to inquire about the existence
        of a particular stream identified by either a HID (H bit
        set) or Name (Name Parameter present).
        When a stream has been identified, a STATUS-RESPONSE is
        returned that will contain the specified HID and/or Name but
        no other parameters if the specified stream is unknown, or
        will otherwise contain the current HID(s), Name, FlowSpec,
        TargetList, and possibly Group(s) of the stream.  Note that
        if a stream has no current HID, the HID field in the
        STATUS-RESPONSE will contain zero;  it will contain the
        first, or only, HID if a valid HID exists; additional valid
        HIDs will be returned in HID parameters.
        Use of STATUS is intended for diagnostic purposes and to
        assist in stream cleanup operations.  Note that if both a
        HID and Name are specified, but they do not correspond to
        the same stream, an ERROR-IN-REQUEST with the appropriate
        reason code (InconsistHID) would be returned.
        It is possible in cases of multiple failures or network
        partitioning for an ST agent to have information about a
        stream after the stream has either ceased to exist or has
        been rerouted around the agent.  When an agent concludes
        that a stream has not been used for a period of time and
        might no longer be valid, it can probe the stream's
        previous-hop or next-hop(s) to see if they believe that the
        stream still exists through the interrogating agent.  If
        not, those hops would reply with a STATUS-RESPONSE that
        contains the HID and/or Name but no other parameters;
        otherwise, if the stream is still valid, the hops would
        reply with the parameters of the stream.
           H (bit 8) is used to indicate whether (when 1) or not
           (when 0) a HID is present in the HID field.
           Q (bit 9) is set to one (1) for remote diagnostic
           purposes when the receiving agent should return a
           stream's parameters, whether or not the source of the
           message is believed to be a previous-hop or next-hop in
           the specified stream.  Note that this use has potential
           for disclosure of sensitive information.
           RVLId and SVLId may either or both be zero when STATUS is
           used for diagnostic purposes.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 16 |H|Q| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId/0 | SVLId/0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | HID/0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 54.  STATUS Control Message
     4.2.3.17.        STATUS-RESPONSE
        STATUS-RESPONSE (OpCode = 17) is the reply to a STATUS
        message.  If the stream specified in the STATUS message is
        not known, the STATUS-RESPONSE will contain the specified
        HID and/or Name but no other parameters.  It will otherwise
        contain the current HID(s), Name, FlowSpec, TargetList, and
        possibly Group of the stream.  Note that if a stream has no
        current HID, the H bit in the STATUS-RESPONSE will be zero.
        The HID field will contain the first, or only, HID if a
        valid HID exists; additional valid HIDs will be returned in
        HID parameters.
           H (bit 8) is used to indicate whether (when 1) or not
           (when 0) a HID is present in the HID field.
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode = 17 |H|Q| 0 | TotalBytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RVLId/0 | SVLId/0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reference | LnkReference | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SenderIPAddress | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | HID/0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! Name Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

FlowSpec Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Group Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! HID Parameter ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

TargetList Parameter :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 55.  STATUS-RESPONSE Control Message

4.3. Suggested Protocol Constants

  The ST Protocol uses several fields that must have specific values
  for the protocol to work, and also several values that an
  implementation must select.  This section specifies the required
  values and suggests initial values for others.  It is recommended
  that the latter be implemented as variables so that they may be
  easily changed when experience indicates better values.
  Eventually, they should be managed via the normal network
  management facilities.
  ST uses IP Version Number 5.
  When encapsulated in IP, ST uses IP Protocol Number 5.
   Value  ST Command Message Name       Value     ST Element Name
  ------- -----------------------      ------- ---------------------
     1    ACCEPT                          1    ErroredPDU
     2    ACK                             2    FlowSpec
     3    CHANGE                          3    FreeHIDs
     4    CHANGE-REQUEST                  4    Group
     5    CONNECT                         5    HID
     6    DISCONNECT                      6    MulticastAddress
     7    ERROR-IN-REQUEST                7    Name
     8    ERROR-IN-RESPONSE               8    NextHopIPAddress
     9    HELLO                           9    Origin
    10    HID-APPROVE                    10    OriginTimestamp
    11    HID-CHANGE                     11    RecordRoute
    12    HID-CHANGE-REQUEST             12    RFlowSpec
    13    HID-REJECT                     13    RGroup
    14    NOTIFY                         14    RHID
    15    REFUSE                         15    RName
    16    STATUS                         16    SrcRoute, IP Loose
    17    STATUS-RESPONSE                17    SrcRoute, IP Strict
                                         18    SrcRoute, ST Loose
                                         19    SrcRoute, ST Strict
                                         20    TargetList
                                         21    UserData
  A good choice for the minimum number of bits in the FreeHIDBitMask
  element of the FreeHIDs parameter is not yet known.  We suggest a
  minimum of 64 bits, i.e., N in Figure 25 has a value of two (2).
  HID value zero (0) is reserved for ST Control Messages.  HID
  values 1-3 are reserved for future use.
  VLId value zero (0) may only be used in the RVLId field of an ST
  Control Message when the appropriate value has not yet been
  received from the other end of the virtual link;' except for an
  ERROR-IN-REQUEST or diagnostic message, the SVLId field may never
  contain a value of zero except in a diagnostic message.  VLId
  value 1 is reserved for use with HELLO messages by those agents
  whose implementation wishes to have all HELLOs so identified.
  VLId values 2-3 are reserved for future use.
  The following permanent IP multicast addresses have been assigned
  to ST:
     224.0.0.7    All ST routers
     224.0.0.8    All ST hosts
  In addition, a block of transient IP multicast addresses,
  224.1.0.0 - 224.1.255.255, has been allocated for ST multicast
  groups.  Note that in the case of Ethernet, an ST Multicast
  address of 224.1.cc.dd maps to an Ethernet Multicast address of
  01:00:5E:01:cc:dd (see [6]).
  SCMP uses retransmission to effect reliability and thus has
  several "retransmission timers".  Each "timer" is modeled by an
  initial time interval (ToXxx), which gets updated dynamically
  through measurement of control traffic, and a number of times
  (NXxx) to retransmit a message before declaring a failure.  All
  time intervals are in units of milliseconds.
   Value   Timeout  Name                      Meaning
  ------- ---------------------- ----------------------------------
    1000  ToAccept               Initial hop-by-hop timeout for
                                 acknowledgment of ACCEPT
       3  NAccept                ACCEPT retries before failure
    1000  ToConnect              Initial hop-by-hop timeout for
                                 acknowledgment of CONNECT
       5  NConnect               CONNECT retries before failure
    1000  ToDisconnect           Initial hop-by-hop timeout for
                                 acknowledgment of DISCONNECT
      3   NDisconnect            DISCONNECT retries before
                                 failure
   Value   Timeout  Name                      Meaning
  ------- ---------------------- ----------------------------------
    1000  ToHIDAck               Initial hop-by-hop timeout for
                                 acknowledgment of
                                 HID-CHANGE-REQUEST
       3  NHIDAck                HID-CHANGE-REQUEST retries
                                 before failure
    1000  ToHIDChange            Initial hop-by-hop timeout for
                                 acknowledgment of HID-CHANGE
       3  NHIDChange             HID-CHANGE retries before
                                 failure
    1000  ToNotify               Initial hop-by-hop timeout for
                                 acknowledgment of NOTIFY
       3  NNotify                NOTIFY retries before failure
    1000  ToRefuse               Initial hop-by-hop timeout for
                                 acknowledgment of REFUSE
       3  NRefuse                REFUSE retries before failure
    1000  ToReroute              Timeout for receipt of ACCEPT or
                                 REFUSE from targets during
                                 failure recovery
       5  NReroute               CONNECT retries before failure
    5000  ToEnd2End              End-to-End timeout for receipt
                                 of ACCEPT or REFUSE from targets
                                 by origin
       0  NEnd2End               CONNECT retries before failure
   Value   Parameter  Name                    Meaning
  ------- ---------------------- ----------------------------------
      10  NHIDAbort              Number of rejected HID proposals
                                 before aborting the HID
                                 negotiation process
   10000  HelloTimerHoldDown     Interval that Restarted bit must
                                 be set after ST restart
       5  HelloLossFactor        Number of consecutively missed
                                 HELLO messages before declaring
                                 link failure
    2000  DefaultRecoveryTimeout Interval between successive
                                 HELLOs to/from active neighbors
       2  DefaultHelloFactor     HELLO filtering function factor

Areas Not Addressed

There are a number of issues that will need to be addressed in the long run but are not addressed here. Some issues are network or implementation specific. For example, the management of multicast groups depends on the interface that a network provides to the ST agent, and an UP/DOWN protocol based on ST HELLO messages depends on the details of the ST agents. Both these examples may impact the ST implementations, but we feel it is inappropriate to specify them here.

In other cases we feel that appropriate solutions are not clear at this time. The following are examples of such issues:

This document does not include a routing mechanism. We do not feel that a routing strategy based on minimizing the number of hops from the source to the destination is necessarily appropriate. An alternative strategy is to minimize the consumption of internet resources within some delay constraints. Furthermore, it would be preferable if the routing function were to provide routes that incorporated bandwidth, delay, reliability, and perhaps other characteristics, not just connectivity. This would increase the likelihood that a selected route would succeed. This requirement would probably cause the ST agents to exchange more routing information than currently implemented. We feel that further research and experimentation will be required before an appropriate routing strategy is well enough defined to be incorporated into the ST specification.

Once the bandwidth for a stream has been agreed upon, it is not sufficient to rely on the origin to transmit traffic at that rate. The internet should not rely on the origin to operate properly. Furthermore, even if the origin sources traffic at the agreed rate, the packets may become aggregated unintentionally and cause local congestion. There are several approaches to addressing this problem, such as metering the traffic in each stream as it passes through each agent. Experimentation is necessary before such a mechanism is selected.

The interface between the agent and the network is very limited. A mechanism is provided by which the ST layer can query the network to determine the likelihood that a stream can be supported. However, this facility will require practical experience before its appropriate use is defined.

The simplex tree model of a stream does not easily allow for using multiple paths to support a greater bandwidth. That is, at any given point in a stream, the entire incoming bandwidth must be transmitted to the same next-hop in order to get to some target. If the bandwidth isn't available along any single path, the stream cannot be built to that target. It may be the case that the bandwidth is not available along a single path, but if the data

flow is split along multiple paths, and so multiple next-hops, sufficient bandwidth would be available. As currently specified, the ST agent at the point where the multiple flows converge will refuse the second connection because it can only be interpreted as a routing failure. A mechanism that allows multiple paths in a stream and can protect against routing failures has not been defined.

If sufficient bandwidth is not available, both preemption and rerouting are possible. However, it is not clear when to use one or the other. As currently specified, an ST agent that cannot obtain sufficient bandwidth will attempt to preempt lower precedence streams before attempting to reroute around the bottleneck. This may lead to an undesirably high number of preemptions. It may be that a higher precedence stream can be rerouted around lower precedence streams and still meet its performance requirements, whereas the preempted lower precedence streams cannot be reconstructed and still meet their performance requirements. A simple and effective algorithm to allow a better decision has not been identified.

In case a stream cannot be completed, ST does not report to the application the nature of the trouble in any great detail. Specifically, the application cannot determine where the bottleneck is, whether the problem is permanent or transitory, or the likely time before the trouble may be resolved. The application can only attempt to build the stream at some later time hoping that the trouble has been resolved. Schemes can be envisioned by which information is relayed back to the application. However, only practical experience can evaluate the kind of trouble that is most likely encountered and the nature of information that would be most useful to the application.

A mechanism is also not defined for cases where a stream cannot be completed not because of lack of resources but because of an unexpected failure that results in an ERROR-IN-REQUEST message. An ERROR-IN-REQUEST message is returned in cases when an ST agent issues a malformed control message to a neighbor. Such an occurrence is unexpected and may be caused by a bad or incomplete ST implementation. In some cases a message, such as a NOTIFY should be sent to the origin. Such a mechanism is not defined because it is not clear what information can be extracted and what the origin should do.

No special action is taken when a target is removed from a stream. Removing a target may also remove a bottleneck either in bandwidth, packet rate or packet size, but advantage of this opportunity is not taken automatically. The application may initiate a change to the stream's characteristics, but it is not in the best position to do this because the application may not know the nature of the bottleneck. The ST layer may have the best information, but a

mechanism to do this may be very complex. As a result, this concept requires further thought.

An agent simply discards a stream's data packets if it cannot forward them. The reason may be that the packets are too large or are arriving at too high a rate. Alternative actions may include an attempt to do something with the packets, such as fragmenting them, or to notify the origin of the trouble. Corrective measures may be too complex, so it may be preferable simply to notify the origin with a NOTIFY message. However, if the incoming packet rate is causing congestion, then the NOTIFY messages themselves may cause more trouble. The nature of the communication has yet to be defined.

The FlowSpec includes a cost field, but its implementation has not been identified. The units of cost can probably be defined relatively easily. Cost of bandwidth can probably also be assigned. It is not clear how cost is assigned to other functions, such as high precedence or low delay, or how cost of the components of the stream are combined together. It is clear that the cost to provide services will become more important in the near future, but it is not clear at this time how that cost is determined.

A number of parameters of the FlowSpec are intended to be used as ranges, but some may be useful as discrete values. For example, the FlowSpec may specify that bandwidth for a stream carrying voice should be reserved in a range from 16Kbps to 64Kbps because the voice codec has a variable coding rate. However, the voice codec may be varied only among certain discrete values, such as 16Kbps, 32Kbps and 64Kbps. A stream that has 48Kbps of bandwidth is no better than one with 32Kbps. The parameters of the FlowSpec where this may be relevant should optionally specify discrete values. This is being considered.

Groups are defined as a way to associate different streams, but the nature of the association is left for further study. An example of such an association is to allow streams whose traffic is inherently not simultaneous to share the same allocated resources. This may happen for example in a conference that has an explicit floor, such that only one site can generate video or audio traffic at any given time. The grouping facility can be implemented based on this specification, but the implementation of the possible uses of groups will require new functionality to be added to the ST agents. The uses for groups and the implementation to support them will be carried out as experience is gained and the need arises.

We hope that the ST we here propose will act as a vehicle to study the use and performance of stream oriented services across packet switched networks.

               [This page intentionally left blank.]

Glossary

appropriate reason code

  This phrase refers to one or perhaps a set of reason codes that
  indicate why a particular action is being taken.  Typically,
  these result from detection of errors or anomalous conditions.
  It can also indicate that an application component or agent has
  presented invalid parameters.

DefaultRecoveryTimeout

  The DefaultRecoveryTimeout is maintained by each ST agent.  It
  indicates the default time interval to use for sending HELLO
  messages.

downstream

  The direction in a stream from an origin toward its targets.

element

  The fields and parameters of the ST control messages are
  collectively called elements.

FlowSpec

  The Flow Specification, abbreviated "FlowSpec" is used by an
  application to specify required and desired characteristics of
  the stream.  The FlowSpec specifies bandwidth, delay, and
  reliability parameters.  Both minimal requirements and desired
  characteristics are included.  This information is then used to
  guide route selection and resource allocation decisions.  The
  desired vs. required characteristics are used to guide tradeoff
  decisions among competing stream requests.

group

  A set of related streams can be associated as a group.  This is
  done by generating a Group Name and assigning it to each of the
  related streams.  The grouping information can then be used by
  the ST agents in making resource management and other control
  decisions.  For example, when preemption is necessary to
  establish a high precedence stream, we can exploit the group
  information to minimize the number of stream groups that are
  preempted.

Group Name

  The Group Name is used to indicate that a collection of streams
  are related.  A Group Name is structured to ensure that it is
  unique across all hosts:  it includes the address of the host
  where it was generated combined with a unique number generated
  by that host.  A timestamp is added to ensure that the overall
  name is unique over all time.  (A Group Name has the same format
  as a stream Name.)

HelloLossFactor

  The HelloLossFactor is a parameter maintained by each ST agent.
  It identifies the expected number of consecutive HELLO messages
  typically lost due to transient factors.  Thus, an agent will be
  assumed to be down after we miss more than HelloLossFactor
  messages.

HelloTimer

  The HelloTimer is a millisecond timer maintained by each ST
  agent.  It is included in each HELLO message.  It represents the
  time since the agent was restarted, modulo the precision of the
  field.  It is used to detect variations in the delay between the
  two agents, by comparing the arrival interval of two HELLO
  messages to the difference between their HelloTimer fields.

HelloTimerHoldDown

  The HelloTimerHoldDown value is maintained by each ST agent.
  When an ST agent is restarted, it will set the "Restarted" bit
  in all HELLO messages it sends for HelloTimerHoldDown seconds.

HID

  The Hop IDentifier, abbreviated as HID, is a numeric key stored
  in the header of each ST packet.  It is used by an ST agent to
  associate the packet with one of the incoming hops managed by
  the agent.  It can be used by receiving agent to map to
  the set of outgoing next-hops to which the message should be
  forwarded.  The HID field of an ST packet will generally need to
  be changed as it passes through each ST agent since there may be
  many HIDs associated with a single stream.

hop

  A "hop" refers to the portion of a stream's path between two
  neighbor ST agents.  It is usually represented by a physical
  network.  However, a multicast hop can connect a single ST agent
  to several next-hop ST agents.

host agents

  Synonym for host ST agents.

host ST agents

  Host ST agents are ST agents that provide services to higher
  layer protocols and applications.  The services include methods
  for sourcing data from and sinking data to the higher layer or
  application, and methods for requesting and modifying streams.

intermediate agents

  Synonym for intermediate ST agents.

intermediate ST agents

  Intermediate ST agents are ST agents that can forward ST
  packets between the networks to which they are attached.

MTU

  The abbreviation for Maximum Transmission Unit, which is the
  maximum packet size in bytes that can be accepted by a given
  network for transmission.  ST agents determine the maximum
  packet size for a stream so that data written to the stream can
  be forwarded through the networks without fragmentation.

multi-destination simplex

  The topology and data flow of ST streams are described as being
  multi-destination simplex:  all data flowing on the stream
  originates from a single origin and is passed to one or more
  destination targets.  Only control information, invisible to the
  application program, ever passes in the upstream direction.

NAccept

  NAccept is an integer parameter maintained by each ST agent.  It
  is used to control retransmission of an ACCEPT message.  Since
  an ACCEPT request is relayed by agents back toward the origin,
  it must be acknowledged by each previous-hop agent.  If this ACK
  is not received within the appropriate timeout interval, the
  request will be resent up to NAccept times before giving up.

Name

  Generally refers to the name of a stream.  A stream Name is
  structured to ensure that it is unique across all hosts: it
  includes the address of the host where it was generated combined
  with a unique number generated at that host.  A timestamp is
  added to ensure that the overall Name is unique over all time.
  (A stream Name has the same format as a Group Name.)

NConnect

  NConnect is an integer parameter maintained by each ST agent.
  It is used to control retransmission of a CONNECT message.  A
  CONNECT request must be acknowledged by each next-hop agent as
  it is propagated toward the targets.  If a HID-ACCEPT,
  HID-REJECT, or ACK is not received for the CONNECT between any
  two agents within the appropriate timeout interval, the request
  will be resent up to NConnect times before giving up.

NDisconnect

  NDisconnect is an integer parameter maintained by each ST
  agent.  It is used to control retransmission of a DISCONNECT
  message.  A DISCONNECT request must be acknowledged by each
  next-hop agent as it is propagated toward the targets.  If this
  ACK is not received for the DISCONNECT between any two agents
  within the appropriate timeout interval, the request will be
  resent up to NDisconnect times before giving up.

next protocol identifier

  The next protocol identifier is used by a target ST agent to
  identify to which of several higher layer protocols it should
  pass data packets it receives the network.  Examples of higher
  layer protocols include the Network Voice Protocol and the
  Packet Video Protocol.  These higher layer protocols will
  typically perform further demultiplexing among multiple
  application processes as part of their protocol processing
  activities.

next-hop

  Synonym for next-hop ST agent.

next-hop ST agent

  For each origin or intermediate ST agent managing a stream
  there are a set of next-hop ST agents.  The intermediate agent
  forwards each data packet it receives to all the next-hop ST
  agents, which in turn forward the data toward the target host
  agent (if the particular next-hop agent is another intermediate
  agent) or to the next higher protocol layer at the target (if
  the particular next-hop agent is a host agent).

NextPcol

  NextPcol is a field in each Target of the CONNECT message used
  to convey the next protocol identifier.  See definition of next
  protocol identifier above for more details.

NHIDAbort

  NHIDAbort is an integer parameter maintained by each ST agent.
  It is the number of unacceptable HID proposals before an ST
  agent aborts the HID negotiation process.

NHIDAck

  NHIDAck is an integer parameter maintained by each ST agent.
  It is used to control retransmission of HID-CHANGE-REQUEST
  messages.  HID-CHANGE-REQUEST is sent by an ST agent to the
  previous-hop ST agent to request that the HID in use between
  those agents be changed.  The previous-hop acknowledges the
  HID-CHANGE-REQUEST message by sending a HID-CHANGE message.  If
  the HID-CHANGE is not received within the appropriate timeout
  interval, the request will be resent up to NHIDAck times before
  giving up.

NHIDChange

  NHIDChange is an integer parameter maintained by each ST agent.
  It is used to control retransmission of the HID-CHANGE message.
  A HID-CHANGE message must be acknowledged by the next-hop agent.
  If this ACK is not received within the appropriate timeout
  interval, the request will be resent up to NHIDChange times
  before giving up.

NRefuse

  NRefuse is an integer parameter maintained by each ST agent.
  It is used to control retransmission of a REFUSE message.  As a
  REFUSE request is relayed by agents back toward the origin, it
  must be acknowledged by each previous-hop agent.  If this ACK is
  not received within the appropriate timeout interval, the
  request will be resent up to NRefuse times before giving up.

NRetryRoute

  NRetryRoute is an integer parameter maintained by each ST
  agent.  It is used to control route exploration.  When an agent
  receives a REFUSE message whose ReasonCode indicates that the
  originally selected route is not acceptable, the agent should
  attempt to find an alternate route to the target.  If the agent
  has not found a viable route after a maximum of NRetryRoute
  choices, it should give up and notify the previous-hop or
  application that it cannot find an acceptable path to the
  target.

origin

  The origin of a stream is the host agent where an application
  or higher level protocol originally requested that the stream be
  created.  The origin specifies the data to be sent through the
  stream.

parameter

  Parameters are additional values that may be included in
  control messages.  Parameters are often optional.  They are
  distinguished from fields, which are always present.

participants

  Participants are the end-users of a stream.

PDU

  Abbreviation for Protocol Data Unit, defined below.

peer

  The term peer is used to refer to entities at the same protocol
  layer.  It is used here to identify instances of an application
  or protocol layer above ST.  For example, data is passed through
  a stream from an originating peer process to its target peers.

previous-hop

  Synonym for previous-hop ST agent.

previous-hop ST agent

  The origin or intermediate agent from which an ST agent receives
  its data.

protocol data unit

  A protocol data unit (PDU) is the unit of data passed to a
  protocol layer by the next higher layer protocol or user.  It
  consists of control information and possibly user data.

RecoveryTimeout

  RecoveryTimeout is specified in the FlowSpec of each stream.
  The minimum of these values over all streams between a pair of
  adjacent agents determines how often those agents must send
  HELLO messages to each other in order to ensure that failure of
  one of the agents will be detected quickly enough to meet the
  guarantee implied by the FlowSpec.

Restarted bit

  The Restarted bit is part of the HELLO message.  When set, it
  indicates that the sending agent was restarted recently (within
  the last HelloTimerHoldDown seconds).

round-trip time

  The round-trip-time is the time it takes a message to be sent,
  delivered, processed, and the acknowledgment received.  It
  includes both network and processing delays.

RTT

  Abbreviation for round-trip-time.

RVLId

  Abbreviation for Receiver's Virtual Link Identifier.  It
  uniquely identifies to the receiver the virtual link, and this
  stream, used to send it a message.  See definition for Virtual
  Link Identifier below.

SAP

  Abbreviation for Service Access Point.

SCMP

  Abbreviation for ST Control Message Protocol, defined below.

Service Access Point

  A point where a protocol service provider makes available the
  services it offers to a next higher layer protocol or user.

setup phase

  Before data can be transmitted through a stream, the ST agents
  must distribute state information about the stream to all agents
  along the path(s) to the target(s).  This is the setup phase.
  The setup phase ends when all the ACCEPT and REFUSE messages
  sent by the targets have been delivered to the origin.  At this
  point, the data transfer phase begins and data can be sent.
  Requests to modify the stream can be issued after the setup
  phase has ended, i.e., during the data transfer phase without
  disrupting the flow of data.

ST agent

  An ST agent is an entity that implements the ST Protocol.

ST Control Message Protocol

  The ST Control Message Protocol is the subset of the overall ST
  Protocol responsible for creation, modification, maintenance,
  and tear down of a stream.  It also includes support for event
  notification and status monitoring.

stream

  A stream is the basic object managed by the ST Protocol for
  transmission of data.  A stream has one origin where data are
  generated and one or more targets where the data are received
  for processing.  A flow specification, provided by the origin
  and negotiated among the origin, intermediate, and target ST
  agents, identifies the requirements of the application and the
  guarantees that can be assured by the ST agents.

subsets

  Subsets of the ST Protocol are permitted, as defined in various
  sections of this specification.  Subsets are defined to allow
  simplified implementations that can still effectively
  interoperate with more complete implementations without causing
  disruption.

SVLId

  Abbreviation for Sender's Virtual Link Identifier.  It uniquely
  identifies to the receiver the virtual link identifier that
  should be placed into the RVLId field of all replies sent over
  the virtual link for a given stream.  See definition for Virtual
  Link Identifier below.

target

  An ST target is the destination where data supplied by the
  origin will be delivered for higher layer protocol or
  application processing.

tear down

  The tear down phase of a stream begins when the origin indicates
  that it has no further data to send and the ST agents through
  which the stream passes should dismantle the stream and release
  its resources.

ToAccept

  ToAccept is a timeout in seconds maintained by each ST agent.
  It sets the retransmission interval for ACCEPT messages.

ToConnect

  ToConnect is a timeout in seconds maintained by each ST agent.
  It sets the retransmission interval a CONNECT messages.

ToDisconnect

  ToDisconnect is a timeout in seconds maintained by each ST
  agent.  It sets the retransmission interval for DISCONNECT
  messages.

ToHIDAck

  ToHIDAck is a timeout in seconds maintained by each ST agent.
  It sets the retransmission interval for HID-CHANGE-REQUEST
  messages.

ToHIDChange

  ToHIDChange is a timeout in seconds maintained by each ST agent.
  It sets the retransmission interval for HID-CHANGE messages.

ToRefuse

  ToRefuse is a timeout in seconds maintained by each ST agent.
  It sets the retransmission interval for REFUSE messages.

upstream

  The direction in a stream from a target toward the origin.

Virtual Link

  A virtual link is one edge of the tree describing the path of
  data flow through a stream.  A separate virtual link is assigned
  to each pair of neighbor ST agents, even when multiple next-hops
  are be reached through a single network level multicast group.
  The virtual link allows efficient demultiplexing of ST Control
  Message PDUs received from a single physical link or network.

Virtual Link Identifier

  For each ST Control Message sent, the sender provides its own
  virtual link identifier and that of the receiver (if known).
  Either of these identifiers, combined with the address of the
  corresponding host, can be used to identify uniquely the virtual
  control link to the agent.  However, virtual link identifiers
  are chosen by the associated agent so that the agent may
  precisely identify the stream, state machine, and other protocol
  processing data elements managed by that agent, without regard
  to the source of the control message.  Virtual link identifiers
  are not negotiated, and do not change during the lifetime of a
  stream.  They are discarded when the stream is torn down.

References

[1] Braden, B., Borman, D., and C. Partridge, "Computing the

   Internet Checksum", RFC 1071, USC/Information Sciences
   Institute, Cray Research, BBN Laboratories, September
   1988.

[2] Braden, R. (ed.), "Requirements for Internet Hosts --

   Communication Layers", RFC 1122, USC/Information Sciences
   Institute, October 1989.

[3] Cheriton, D., "VMTP: Versatile Message Transaction Protocol

   Specification", RFC 1045, Stanford University, February 1988.

[4] Cohen, D., "A Network Voice Protocol NVP-II", USC/Information

   Sciences Institute, April 1981.

[5] Cole, E., "PVP - A Packet Video Protocol", W-Note 28,

   USC/Information Sciences Institute, August 1981.

[6] Deering, S., "Host Extensions for IP Multicasting", RFC 1112,

   Stanford University, August 1989.

[7] Edmond W., Seo K., Leib M., and C. Topolcic, "The DARPA

   Wideband Network Dual Bus Protocol", accepted for presentation
   at ACM SIGCOMM '90, September 24-27, 1990.

[8] Forgie, J., "ST - A Proposed Internet Stream Protocol",

   IEN 119, M. I. T. Lincoln Laboratory, 7 September 1979.

[9] Jacobs I., Binder R., and E. Hoversten E., "General Purpose

   Packet Satellite Network", Proc. IEEE, vol 66, pp 1448-1467,
   November 1978.

[10] Jacobson, V., "Congestion Avoidance and Control", ACM

    SIGCOMM-88, August 1988.

[11] Karn, P. and C. Partridge, "Round Trip Time Estimation",

    ACM SIGCOMM-87, August 1987.

[12] Mallory, T., and A. Kullberg, "Incremental Updating of the

    Internet Checksum", RFC 1141, BBN Communications
    Corporation, January 1990.

[13] Mills, D., "Network Time Protocol (Version 2) Specification

    and Implementation", RFC 1119, University of Delaware,
    September 1989 (Revised February 1990).

[14] Pope, A., "The SIMNET Network and Protocols", BBN

    Report No. 7102, BBN Systems and Technologies, July 1989.

[15] Postel, J., ed., "Internet Protocol - DARPA Internet Program

    Protocol Specification", RFC 791, DARPA, September 1981.

[16] Postel, J., ed., "Transmission Control Protocol - DARPA

    Internet Program Protocol Specification", RFC 793, DARPA,
    September 1981.

[17] Postel, J., "User Datagram Protocol", RFC 768,

    USC/Information Sciences Institute, August 1980.

[18] Reynolds, J., Postel, J., "Assigned Numbers", RFC 1060,

    USC/Information Sciences Institute, March 1990.

[19] SDNS Protocol and Signaling Working Group, SP3 Sub-Group,

    SDNS Secure Data Network System, Security Protocol 3 (SP3),
    SDN.301, Rev. 1.5, 1989-05-15.

[20] SDNS Protocol and Signaling Working Group, SP3 Sub-Group,

    SDNS Secure Data Network System, Security Protocol 3 (SP3)
    Addendum 1, Cooperating Families, SDN.301.1, Rev. 1.2,
    1988-07-12.

Security Considerations

See section 3.7.8.

Authors' Addresses

  Stephen Casner
  USC/Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292-6695
  Phone: (213) 822-1511 x153
  EMail: [email protected]
  Charles Lynn, Jr.
  BBN Systems and Technologies,
  a division of Bolt Beranek and Newman Inc.
  10 Moulton Street
  Cambridge, MA  02138
  Phone: (617) 873-3367
  EMail: [email protected]
  Philippe Park
  BBN Systems and Technologies,
  a division of Bolt Beranek and Newman Inc.
  10 Moulton Street
  Cambridge, MA  02138
  Phone: (617) 873-2892
  EMail: [email protected]
  Kenneth Schroder
  BBN Systems and Technologies,
  a division of Bolt Beranek and Newman Inc.
  10 Moulton Street
  Cambridge, MA  02138
  Phone: (617) 873-3167
  EMail: [email protected]
  Claudio Topolcic
  BBN Systems and Technologies,
  a division of Bolt Beranek and Newman Inc.
  10 Moulton Street
  Cambridge, MA  02138
  Phone: (617) 873-3874
  EMail: [email protected]
               [This page intentionally left blank.]

Appendix 1. Data Notations

The convention in the documentation of Internet Protocols is to express numbers in decimal and to picture data with the most significant octet on the left and the least significant octet on the right.

The order of transmission of the header and data described in this document is resolved to the octet level. Whenever a diagram shows a group of octets, the order of transmission of those octets is the normal order in which they are read in English. For example, in the following diagram the octets are transmitted in the order they are numbered.

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 1 | 2 | 3 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | 6 | 7 | 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 9 | 10 | 11 | 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 56.  Transmission Order of Bytes

Whenever an octet represents a numeric quantity the left most bit in the diagram is the high order or most significant bit. That is, the bit labeled 0 is the most significant bit. For example, the following diagram represents the value 170 (decimal).

                        0 1 2 3 4 5 6 7
                       +-+-+-+-+-+-+-+-+
                       |1 0 1 0 1 0 1 0|
                       +-+-+-+-+-+-+-+-+
                Figure 57.  Significance of Bits

Similarly, whenever a multi-octet field represents a numeric quantity the left most bit of the whole field is the most significant bit. When a multi-octet quantity is transmitted the most significant octet is transmitted first.

Fields whose length is fixed and fully illustrated are shown with a vertical bar (|) at the end; fixed fields whose contents are abbreviated are shown with an exclamation point (!); variable fields are shown with colons (:).

Optional parameters are separated from control messages with a blank line. The order of any optional parameters is not meaningful.