Difference between revisions of "RFC1627"

From RFC-Wiki
imported>Admin
(Created page with " Network Working Group E. Lear Request for Comments: 1627 Silicon Graphics, Inc. Category: Informational...")
 
Line 1: Line 1:
 
 
 
 
 
 
 
Network Working Group                                            E. Lear
 
Network Working Group                                            E. Lear
 
Request for Comments: 1627                        Silicon Graphics, Inc.
 
Request for Comments: 1627                        Silicon Graphics, Inc.
Line 14: Line 8:
 
                                               Sun Microsystems, Inc.
 
                                               Sun Microsystems, Inc.
 
                                                             July 1994
 
                                                             July 1994
 
  
 
                   Network 10 Considered Harmful
 
                   Network 10 Considered Harmful
Line 28: Line 21:
  
 
Re-use of Internet addresses for private IP networks is the topic of
 
Re-use of Internet addresses for private IP networks is the topic of
the recent [[RFC1597|RFC 1597]] [1].  It reserves a set of IP network numbers,
+
the recent RFC 1597 [1].  It reserves a set of IP network numbers,
 
for (re-)use by any number of organizations, so long as those
 
for (re-)use by any number of organizations, so long as those
 
networks are not routed outside any single, private IP network.  RFC
 
networks are not routed outside any single, private IP network.  RFC
Line 53: Line 46:
 
evolution, through which the community realized how painful it can be
 
evolution, through which the community realized how painful it can be
 
to convert a network of computers to use an assigned number after
 
to convert a network of computers to use an assigned number after
 
 
 
 
  
 
using random or default addresses found on computers just out of the
 
using random or default addresses found on computers just out of the
box.  [[RFC1597|RFC 1597]] abrogates this model without benefit of general IETF
+
box.  RFC 1597 abrogates this model without benefit of general IETF
 
community discussion and consensus, leaving policy and operational
 
community discussion and consensus, leaving policy and operational
 
questions unasked and unanswered.
 
questions unasked and unanswered.
Line 78: Line 67:
 
access.  When this problem is addressed through proper privacy and
 
access.  When this problem is addressed through proper privacy and
 
authentication standards, non-unique IP addresses will become a
 
authentication standards, non-unique IP addresses will become a
bottleneck to easy deployment if the recommendations in [[RFC1597|RFC 1597]] are
+
bottleneck to easy deployment if the recommendations in RFC 1597 are
 
followed.
 
followed.
  
Line 93: Line 82:
 
It is absolutely key to keep the Internet community's attention
 
It is absolutely key to keep the Internet community's attention
 
focused on the efforts toward IP next generation (IPng), so that we
 
focused on the efforts toward IP next generation (IPng), so that we
may transcend the limitations of IPv4.  [[RFC1597|RFC 1597]] produces apparent
+
may transcend the limitations of IPv4.  RFC 1597 produces apparent
 
relief from IPv4 address space exhaustion by masking those networks
 
relief from IPv4 address space exhaustion by masking those networks
 
that are not connecting to the Internet, today.  However, this
 
that are not connecting to the Internet, today.  However, this
Line 106: Line 95:
 
without uniquely assigned IP addresses. The same can be said of the
 
without uniquely assigned IP addresses. The same can be said of the
 
Silicon Graphics merger with MIPS. There are many, many more examples
 
Silicon Graphics merger with MIPS. There are many, many more examples
 
 
 
 
  
 
that can be cited.
 
that can be cited.
  
It should be noted that a scheme similar to [[RFC1597|RFC 1597]] can be
+
It should be noted that a scheme similar to RFC 1597 can be
 
implemented at the time that we actually run out of assignable IPv4
 
implemented at the time that we actually run out of assignable IPv4
 
address space; it simply requires that those organizations which have
 
address space; it simply requires that those organizations which have
Line 122: Line 107:
  
 
OPERATIONAL ISSUES
 
OPERATIONAL ISSUES
 
  
 
Methods are needed to ensure that the remaining addresses are
 
Methods are needed to ensure that the remaining addresses are
Line 135: Line 119:
 
that network.
 
that network.
  
[[RFC1597|RFC 1597]] proposes to solve the routing problem by assigning numbers
+
RFC 1597 proposes to solve the routing problem by assigning numbers
 
that will never be used outside of private environments.  Using such
 
that will never be used outside of private environments.  Using such
 
standard numbers introduces a potential for clashes in another way.
 
standard numbers introduces a potential for clashes in another way.
If two private networks follow [[RFC1597|RFC 1597]] and then later wish to
+
If two private networks follow RFC 1597 and then later wish to
 
communicate with each other, one will have to renumber.  The same
 
communicate with each other, one will have to renumber.  The same
 
problem occurs if a private network wishes to become public.  The
 
problem occurs if a private network wishes to become public.  The
Line 148: Line 132:
  
 
The probability of address clashes occurring over time approach 100%
 
The probability of address clashes occurring over time approach 100%
with [[RFC1597|RFC 1597]].  Picking a random network number reduces the chances
+
with RFC 1597.  Picking a random network number reduces the chances
 
of having to renumber hosts, but introduces the routing problems
 
of having to renumber hosts, but introduces the routing problems
 
described above.  Best of all, retrieving assigned numbers from the
 
described above.  Best of all, retrieving assigned numbers from the
Line 158: Line 142:
 
ever speak IP directly to the outside world, and as such, network
 
ever speak IP directly to the outside world, and as such, network
 
operations picked IP class A network 90 out of thin air to use.
 
operations picked IP class A network 90 out of thin air to use.
 
 
 
 
  
 
Apple is only now recovering from this error, having renumbered some
 
Apple is only now recovering from this error, having renumbered some
Line 169: Line 149:
 
pain when they too attempt to answer the call of the global Internet.
 
pain when they too attempt to answer the call of the global Internet.
  
Another timely example of problems caused by [[RFC1597|RFC 1597]] is Sun's use of
+
Another timely example of problems caused by RFC 1597 is Sun's use of
 
Internet multicasting.  Sun selectively relays specific multicast
 
Internet multicasting.  Sun selectively relays specific multicast
 
conferences.  This has the effect of making many hosts at Sun visible
 
conferences.  This has the effect of making many hosts at Sun visible
Line 188: Line 168:
 
networks based only on explicit permission, rather than refusing to
 
networks based only on explicit permission, rather than refusing to
 
advertise others based on implicit prohibition, as supported by the
 
advertise others based on implicit prohibition, as supported by the
policy formally created in [[RFC1597|RFC 1597]].
+
policy formally created in RFC 1597.
  
 
Security Issues
 
Security Issues
Line 209: Line 189:
 
might well need unique addresses, as illustrated in the example
 
might well need unique addresses, as illustrated in the example
 
above.
 
above.
 
 
 
 
 
 
  
 
Problems with Examples
 
Problems with Examples
  
[[RFC1597|RFC 1597]] gives several examples of IP networks that need not have
+
RFC 1597 gives several examples of IP networks that need not have
 
globally unique address spaces.  Each of those cases is plausible,
 
globally unique address spaces.  Each of those cases is plausible,
 
but that does not make it legitimate to ENCOURAGE non-uniqueness of
 
but that does not make it legitimate to ENCOURAGE non-uniqueness of
 
the addresses.  In fact, it is equally plausible that globally unique
 
the addresses.  In fact, it is equally plausible that globally unique
 
IP addresses will be required, for every one of the scenarios
 
IP addresses will be required, for every one of the scenarios
described in [[RFC1597|RFC 1597]]:
+
described in RFC 1597:
  
 
- Airport displays are public information and multicasting beyond the
 
- Airport displays are public information and multicasting beyond the
Line 244: Line 218:
 
associated with that error, in order to encourage as much Internet
 
associated with that error, in order to encourage as much Internet
 
connectivity as operational policies and technical security permit.
 
connectivity as operational policies and technical security permit.
[[RFC1597|RFC 1597]] works very much against this goal.
+
RFC 1597 works very much against this goal.
  
 
Problems With "Advantages" And More Disadvantages
 
Problems With "Advantages" And More Disadvantages
  
[[RFC1597|RFC 1597]] claims that Classless Inter-Domain Routing (CIDR) will
+
RFC 1597 claims that Classless Inter-Domain Routing (CIDR) will
 
require enterprises to renumber their networks.  In the general case,
 
require enterprises to renumber their networks.  In the general case,
 
this will only involve those networks that are routed outside of
 
this will only involve those networks that are routed outside of
enterprises.  Since [[RFC1597|RFC 1597]] addresses private enterprise networks,
+
enterprises.  Since RFC 1597 addresses private enterprise networks,
 
this argument does not apply.
 
this argument does not apply.
  
Line 265: Line 239:
 
carefully control modem connections.
 
carefully control modem connections.
  
 
+
Finally, RFC 1597 implies that it may be simple to change a host's IP
 
 
 
 
 
 
Finally, [[RFC1597|RFC 1597]] implies that it may be simple to change a host's IP
 
 
address.  For a variety of reasons this may not be the case, and it
 
address.  For a variety of reasons this may not be the case, and it
 
is not the norm today.  For example, a host may be well known within
 
is not the norm today.  For example, a host may be well known within
Line 285: Line 255:
 
expectation of Internet connectivity for ALL assignees.  As such it
 
expectation of Internet connectivity for ALL assignees.  As such it
 
serves to encourage interconnectivity.  IANA assignment of the
 
serves to encourage interconnectivity.  IANA assignment of the
network numbers listed in [[RFC1597|RFC 1597]] serves to formally authorize
+
network numbers listed in RFC 1597 serves to formally authorize
 
behavior contrary to this accepted practice.  Further, this change
 
behavior contrary to this accepted practice.  Further, this change
 
was effected without benefit of community review and approval.
 
was effected without benefit of community review and approval.
  
[[RFC1597|RFC 1597]] specifies a new operational requirement explicitly: network
+
RFC 1597 specifies a new operational requirement explicitly: network
 
service providers must filter the IANA assigned network numbers
 
service providers must filter the IANA assigned network numbers
listed in [[RFC1597|RFC 1597]] from their routing tables.  This address space
+
listed in RFC 1597 from their routing tables.  This address space
 
allocation is permanently removed from being used on the Internet.
 
allocation is permanently removed from being used on the Internet.
  
As we read [[RFC1601|RFC 1601]] [3], this action is not within the purview of
+
As we read RFC 1601 [3], this action is not within the purview of
 
IANA, which should only be assigning numbers within the current
 
IANA, which should only be assigning numbers within the current
 
standards and axioms that underlie the Internet.  IP network numbers
 
standards and axioms that underlie the Internet.  IP network numbers
Line 300: Line 270:
 
the Internet at some future date.  Such assignments violate that
 
the Internet at some future date.  Such assignments violate that
 
axiom, and constitute an architectural change to the Internet.  RFC
 
axiom, and constitute an architectural change to the Internet.  RFC
1602 [4] and [[RFC1310|RFC 1310]] [5] also contain identical wording to this
+
1602 [4] and RFC 1310 [5] also contain identical wording to this
 
effect in the section that describes IANA.
 
effect in the section that describes IANA.
  
While [[RFC1597|RFC 1597]] contains a view worthy of public debate, it is not
+
While RFC 1597 contains a view worthy of public debate, it is not
 
ready for formal authorization.  Hence, we strongly encourage IANA to
 
ready for formal authorization.  Hence, we strongly encourage IANA to
withdraw its IP address assignments documented by [[RFC1597|RFC 1597]] forthwith.
+
withdraw its IP address assignments documented by RFC 1597 forthwith.
  
 
The IAB should review the address assignment policies and procedures
 
The IAB should review the address assignment policies and procedures
Line 317: Line 287:
 
and understood the problems and pains associated with uncoordinated
 
and understood the problems and pains associated with uncoordinated
 
private network number assignments.  In effect the proposal attempts
 
private network number assignments.  In effect the proposal attempts
 
 
 
 
  
 
to codify uncoordinated behavior and alter the accepted Internet
 
to codify uncoordinated behavior and alter the accepted Internet
Line 326: Line 292:
 
thoroughly.
 
thoroughly.
  
[[RFC1597|RFC 1597]] gives the illusion of remedying a problem, by creating
+
RFC 1597 gives the illusion of remedying a problem, by creating
 
formal structure to a long-standing informal practice.  In fact, the
 
formal structure to a long-standing informal practice.  In fact, the
 
structure distracts us from the need to solve these very real
 
structure distracts us from the need to solve these very real
Line 336: Line 302:
 
one host to another.  Before straying from the current architectural
 
one host to another.  Before straying from the current architectural
 
path, we as a community should revisit the reasoning behind the
 
path, we as a community should revisit the reasoning behind the
preaching of unique addressing.  While [[RFC1597|RFC 1597]] attempts to change
+
preaching of unique addressing.  While RFC 1597 attempts to change
 
this model, its costs and limitations for enterprises can be
 
this model, its costs and limitations for enterprises can be
 
enormous, both in the short and long term.
 
enormous, both in the short and long term.
Line 344: Line 310:
 
[1]  Rekhter, Y., Moskowitz, B., Karrenberg, D., and G. de Groot,
 
[1]  Rekhter, Y., Moskowitz, B., Karrenberg, D., and G. de Groot,
 
     "Address Allocation for Private Internets", T.J. Watson Research
 
     "Address Allocation for Private Internets", T.J. Watson Research
     Center, IBM Corp., Chrysler Corp., RIPE NCC, [[RFC1597|RFC 1597]], March
+
     Center, IBM Corp., Chrysler Corp., RIPE NCC, RFC 1597, March
 
     1994.
 
     1994.
  
[2]  Droms, R., "Dynamic Host Configuration Protocol", [[RFC1541|RFC 1541]],
+
[2]  Droms, R., "Dynamic Host Configuration Protocol", RFC 1541,
 
     Bucknell University, October 1993.
 
     Bucknell University, October 1993.
  
 
[3]  Huitema, C., "Charter of the Internet Architecture Board (IAB)",
 
[3]  Huitema, C., "Charter of the Internet Architecture Board (IAB)",
     [[RFC1601|RFC 1601]], IAB, March 1994.
+
     RFC 1601, IAB, March 1994.
  
 
[4]  Internet Architecture Board, Internet Engineering Steering
 
[4]  Internet Architecture Board, Internet Engineering Steering
 
     Group, "The Internet Standards Process -- Revision 2", IAB,
 
     Group, "The Internet Standards Process -- Revision 2", IAB,
     IESG, [[RFC1602|RFC 1602]], March 1994.
+
     IESG, RFC 1602, March 1994.
  
 
[5]  Internet Activities Board, "The Internet Standards Process", RFC
 
[5]  Internet Activities Board, "The Internet Standards Process", RFC
Line 367: Line 333:
  
 
See the section, "Security Issues".
 
See the section, "Security Issues".
 
 
 
 
 
 
 
  
 
AUTHORS' ADDRESSES
 
AUTHORS' ADDRESSES
Line 385: Line 344:
 
Phone: +1 415 390 2414
 
Phone: +1 415 390 2414
  
 
  
 
Erik Fair
 
Erik Fair
Line 394: Line 352:
 
Phone: +1 408 974 1779
 
Phone: +1 408 974 1779
  
 
  
 
Dave Crocker
 
Dave Crocker
Line 404: Line 361:
 
Phone: +1 415 390 1804
 
Phone: +1 415 390 1804
  
 
  
 
Thomas Kessler
 
Thomas Kessler
Line 414: Line 370:
 
Phone: +1 415 336 3145
 
Phone: +1 415 336 3145
  
 
 
 
 
 
 
 
 
 
 
 
 
[[Category:Informational]]
 

Revision as of 08:26, 23 September 2020

Network Working Group E. Lear Request for Comments: 1627 Silicon Graphics, Inc. Category: Informational E. Fair

                                                Apple Computer, Inc.
                                                          D. Crocker
                                              Silicon Graphics, Inc.
                                                          T. Kessler
                                              Sun Microsystems, Inc.
                                                           July 1994
                 Network 10 Considered Harmful
             (Some Practices Shouldn't be Codified)

Status of this Memo

This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

SUMMARY

Re-use of Internet addresses for private IP networks is the topic of the recent RFC 1597 [1]. It reserves a set of IP network numbers, for (re-)use by any number of organizations, so long as those networks are not routed outside any single, private IP network. RFC 1597 departs from the basic architectural rule that IP addresses must be globally unique, and it does so without having had the benefit of the usual, public review and approval by the IETF or IAB. This document restates the arguments for maintaining a unique address space. Concerns for Internet architecture and operations, as well as IETF procedure, are explored.

INTRODUCTION

Growth in use of Internet technology and in attachments to the Internet have taken us to the point that we now are in danger of running out of unassigned IP network numbers. Initially, numbers were formally assigned only when a network was about to be attached to the Internet. This caused difficulties when initial use of IP substantially preceded the decision and permission to attach to the Internet. In particular, re-numbering was painful. The lesson that we learned was that every IP address ought to be globally unique, independent of its attachment to the Internet. This makes it possible for any two network entities to communicate, no matter where either might be located. This model is the result of a decades-long evolution, through which the community realized how painful it can be to convert a network of computers to use an assigned number after

using random or default addresses found on computers just out of the box. RFC 1597 abrogates this model without benefit of general IETF community discussion and consensus, leaving policy and operational questions unasked and unanswered.

KEEP OUR EYES ON THE PRIZE: AN ARCHITECTURAL GOAL AND VIOLATION

A common -- if not universal -- ideal for the future of IP is for every system to be globally accessible, given the proper security mechanisms. Whether such systems comprise toasters, light switches, utility power poles, field medical equipment, or the classic examples of "computers", our current model of assignment is to ensure that they can interoperate.

In order for such a model to work there must exist a globally unique addressing system. A common complaint throughout the community is that the existing security in host software does not allow for every (or even many) hosts in a corporate environment to have direct IP access. When this problem is addressed through proper privacy and authentication standards, non-unique IP addresses will become a bottleneck to easy deployment if the recommendations in RFC 1597 are followed.

The IP version 4 (IPv4) address space will be exhausted. The question is simply: when?

If we assert that all IP addresses must be unique globally, connected or not, then we will run out of IP address space soon.

If we assert that only IP addresses used on the world-wide Internet need to be globally unique, then we will run out of IP address space later.

It is absolutely key to keep the Internet community's attention focused on the efforts toward IP next generation (IPng), so that we may transcend the limitations of IPv4. RFC 1597 produces apparent relief from IPv4 address space exhaustion by masking those networks that are not connecting to the Internet, today. However, this apparent relief will likely produce two results: complacency on the large part of the community that does not take the long term view, and a very sudden IP address space exhaustion at some later date.

Prior to IPng deployment, it is important to preserve all the semantics that make both the Internet and Internet technology so very valuable for interoperability. Apple Computer, IBM, and Motorola could not collaborate as easily as they have to produce the PowerPC without uniquely assigned IP addresses. The same can be said of the Silicon Graphics merger with MIPS. There are many, many more examples

that can be cited.

It should be noted that a scheme similar to RFC 1597 can be implemented at the time that we actually run out of assignable IPv4 address space; it simply requires that those organizations which have been assigned addresses but are not yet connected to the Internet return their addresses to IANA. It is important that the IAB (and IANA as its agent) reassert their ownership of the IP address space now, to preclude challenges to this type of reassignment.

OPERATIONAL ISSUES

Methods are needed to ensure that the remaining addresses are allocated and used frugally. Due to the current problems, Internet service providers have made it increasingly difficult for organizations to acquire public IP network numbers. Private networks have always had the option of using addresses not assigned to them by appropriate authorities. We do not know how many such networks exist, because by their nature they do not interact with the global Internet. By using a random address, a company must take some care to ensure it is able to route to the properly registered owner of that network.

RFC 1597 proposes to solve the routing problem by assigning numbers that will never be used outside of private environments. Using such standard numbers introduces a potential for clashes in another way. If two private networks follow RFC 1597 and then later wish to communicate with each other, one will have to renumber. The same problem occurs if a private network wishes to become public. The likely cost of renumbering is linear to the number of hosts on a network. Thus, a large company with 10,000 hosts on a network could incur considerable expense if it either merged with another company or joined the Internet in such a way as to allow all hosts to directly access the outside network.

The probability of address clashes occurring over time approach 100% with RFC 1597. Picking a random network number reduces the chances of having to renumber hosts, but introduces the routing problems described above. Best of all, retrieving assigned numbers from the appropriate authority in the first place eliminates both existing and potential address conflicts at the cost of using a part of the address space.

Apple Computer once believed that none of its internal systems would ever speak IP directly to the outside world, and as such, network operations picked IP class A network 90 out of thin air to use.

Apple is only now recovering from this error, having renumbered some 5,000 hosts to provide them with "desktop" Internet access. Unless the Internet community reaffirms its commitment to a globally unique address space, we condemn many thousands of organizations to similar pain when they too attempt to answer the call of the global Internet.

Another timely example of problems caused by RFC 1597 is Sun's use of Internet multicasting. Sun selectively relays specific multicast conferences. This has the effect of making many hosts at Sun visible to the Internet, even though they are not addressable via IP unicast routing. If they had non-global addresses this would not work at all. It is not possible to predict which machines need global addresses in advance. Silicon Graphics has a similar configuration, as is likely for others, as well.

Some might argue that assigning numbers to use for private networks will prevent accidental leaks from occurring through some sort of convention a'la Martian packets. While the proposal attempts to create a standard for "private" address use, there is absolutely no way to ensure that other addresses are not also used.

Hence, the "standard" becomes nothing but a misleading heuristic. In fact, it is essential that routers to the global Internet advertise networks based only on explicit permission, rather than refusing to advertise others based on implicit prohibition, as supported by the policy formally created in RFC 1597.

Security Issues

Administrators will have a hard time spotting unauthorized networks, when their network has been breached (either intentionally or unintentionally) because the other networks might have the same numbers as those normally in the routing tables. More over, an inadvertent connection could possibly have a double whammy effect of partitioning two operational networks.

It is worth emphasizing that IP providers should filter out all but authorized networks. Such a practice would not only prevent accidents but also enhance the security of the Internet by reducing the potential number of points of attack.

Internet multicasting adds a new dimension to security. In some cases it may possible to allow multicasting through firewalls that completely restrict unicast routing. Otherwise unconnected networks might well need unique addresses, as illustrated in the example above.

Problems with Examples

RFC 1597 gives several examples of IP networks that need not have globally unique address spaces. Each of those cases is plausible, but that does not make it legitimate to ENCOURAGE non-uniqueness of the addresses. In fact, it is equally plausible that globally unique IP addresses will be required, for every one of the scenarios described in RFC 1597:

- Airport displays are public information and multicasting beyond the

 airport might be useful.

- An organization's machines which, today, do not need global

 connectivity might need it tomorrow.  Further, merging
 organizations creates havoc when the addresses collide.

- Current use of firewalls is an artifact of limitations in the

 technology.  Let's fix the problem, not the symptom.

- Inter-organization private links do not generate benefit from being

 any more correct in guessing which machines want to interact than
 is true for general Internet access.

This is another point that warrants repetition: the belief that administrators can predict which machines will need Internet access is quite simply wrong. We need to reduce or eliminate the penalties associated with that error, in order to encourage as much Internet connectivity as operational policies and technical security permit. RFC 1597 works very much against this goal.

Problems With "Advantages" And More Disadvantages

RFC 1597 claims that Classless Inter-Domain Routing (CIDR) will require enterprises to renumber their networks. In the general case, this will only involve those networks that are routed outside of enterprises. Since RFC 1597 addresses private enterprise networks, this argument does not apply.

The authors mention that DCHP-based tools [2] might help network number transition. However, it is observed that by and large such tools are currently only "potential" in nature.

Additionally, with the onslaught of ISDN, slip, and PPP in host implementations, the potential for a workstation to become a router inadvertently has never been greater. Use of a common set of addresses for private networks virtually assures administrators of having their networks partitioned, if they do not take care to carefully control modem connections.

Finally, RFC 1597 implies that it may be simple to change a host's IP address. For a variety of reasons this may not be the case, and it is not the norm today. For example, a host may be well known within a network. It may have long standing services such as NFS, which would cause problems for clients were its address changed. A host may have software licenses locked by IP address. Thus, migrating a host from private to global addressing may prove difficult. At the very least, one should be careful about addressing well known hosts.

POLICY ISSUES

IANA Has Overstepped Their Mandate

For many years, IANA has followed an assignment policy based on the expectation of Internet connectivity for ALL assignees. As such it serves to encourage interconnectivity. IANA assignment of the network numbers listed in RFC 1597 serves to formally authorize behavior contrary to this accepted practice. Further, this change was effected without benefit of community review and approval.

RFC 1597 specifies a new operational requirement explicitly: network service providers must filter the IANA assigned network numbers listed in RFC 1597 from their routing tables. This address space allocation is permanently removed from being used on the Internet.

As we read RFC 1601 [3], this action is not within the purview of IANA, which should only be assigning numbers within the current standards and axioms that underlie the Internet. IP network numbers are assigned uniquely under the assumption that they will be used on the Internet at some future date. Such assignments violate that axiom, and constitute an architectural change to the Internet. RFC 1602 [4] and RFC 1310 [5] also contain identical wording to this effect in the section that describes IANA.

While RFC 1597 contains a view worthy of public debate, it is not ready for formal authorization. Hence, we strongly encourage IANA to withdraw its IP address assignments documented by RFC 1597 forthwith.

The IAB should review the address assignment policies and procedures that compose IANA's mandate, and reaffirm the commitment to a globally unique IP address space.

COMMENTS AND CONCLUSIONS

The Internet technology and service is predicated on a global address space. Members of the Internet community have already experienced and understood the problems and pains associated with uncoordinated private network number assignments. In effect the proposal attempts

to codify uncoordinated behavior and alter the accepted Internet addressing model. Hence, it needs to be considered much more thoroughly.

RFC 1597 gives the illusion of remedying a problem, by creating formal structure to a long-standing informal practice. In fact, the structure distracts us from the need to solve these very real problems and does not even provide substantive aid in the near-term.

In the past we have all dreaded the idea of having any part of the address space re-used. Numerous luminaries have both written and spoke at length, explaining why it is we want direct connections from one host to another. Before straying from the current architectural path, we as a community should revisit the reasoning behind the preaching of unique addressing. While RFC 1597 attempts to change this model, its costs and limitations for enterprises can be enormous, both in the short and long term.

REFERENCES

[1] Rekhter, Y., Moskowitz, B., Karrenberg, D., and G. de Groot,

    "Address Allocation for Private Internets", T.J. Watson Research
    Center, IBM Corp., Chrysler Corp., RIPE NCC, RFC 1597, March
    1994.

[2] Droms, R., "Dynamic Host Configuration Protocol", RFC 1541,

    Bucknell University, October 1993.

[3] Huitema, C., "Charter of the Internet Architecture Board (IAB)",

    RFC 1601, IAB, March 1994.

[4] Internet Architecture Board, Internet Engineering Steering

    Group, "The Internet Standards Process -- Revision 2", IAB,
    IESG, RFC 1602, March 1994.

[5] Internet Activities Board, "The Internet Standards Process", RFC

    1310, IAB, March 1992.

[6] Internet Activities Board, "Summary of Internet Architecture

    Discussion", Notes available from ISI, [ftp.isi.edu:
    pub/IAB/IABmins.jan91Arch.txt], IAB, January 1991.

SECURITY CONSIDERATIONS

See the section, "Security Issues".

AUTHORS' ADDRESSES

Eliot Lear Silicon Graphics, Inc. 2011 N. Shoreline Blvd. Mountain View, CA 94043-1389

Phone: +1 415 390 2414 EMail: [email protected]

Erik Fair Apple Computer, Inc. 1 Infinite Loop Cupertino, CA 95014

Phone: +1 408 974 1779 EMail: [email protected]

Dave Crocker Silicon Graphics, Inc. 2011 N. Shoreline Blvd. Mountain View, CA 94043-1389

Phone: +1 415 390 1804 EMail: [email protected]

Thomas Kessler Sun Microsystems Inc. Mail Stop MTV05-44 2550 Garcia Ave. Mountain View, CA 94043

Phone: +1 415 336 3145 EMail: [email protected]