RFC4039

From RFC-Wiki

Network Working Group S. Park Request for Comments: 4039 P. Kim Category: Standards Track SAMSUNG Electronics

                                                             B. Volz
                                                       Cisco Systems
                                                          March 2005
                  Rapid Commit Option for the
     Dynamic Host Configuration Protocol version 4 (DHCPv4)

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document defines a new Dynamic Host Configuration Protocol version 4 (DHCPv4) option, modeled on the DHCPv6 Rapid Commit option, for obtaining IP address and configuration information using a 2-message exchange rather than the usual 4-message exchange, expediting client configuration.

Introduction

In some environments, such as those in which high mobility occurs and the network attachment point changes frequently, it is beneficial to rapidly configure clients. And, in these environments it is possible to more quickly configure clients because the protections offered by the normal (and longer) 4-message exchange may not be needed. The 4-message exchange allows for redundancy (multiple DHCP servers) without wasting addresses, as addresses are only provisionally assigned to a client until the client chooses and requests one of the provisionally assigned addresses. The 2-message exchange may therefore be used when only one server is present or when addresses are plentiful and having multiple servers commit addresses for a client is not a problem.

This document defines a new Rapid Commit option for DHCPv4, modeled on the DHCPv6 Rapid Commit option RFC3315, which can be used to initiate a 2-message exchange to expedite client configuration in some environments. A client advertises its support of this option by sending it in DHCPDISCOVER messages. A server then determines whether to allow the 2-message exchange based on its configuration information and can either handle the DHCPDISCOVER as defined in RFC2131 or commit the client's configuration information and advance to sending a DHCPACK message with the Rapid Commit option as defined herein.

Requirements

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC2119.

Client/Server Operations

If a client that supports the Rapid Commit option intends to use the rapid commit capability, it includes a Rapid Commit option in DHCPDISCOVER messages that it sends. The client MUST NOT include it in any other messages. A client and server only use this option when configured to do so.

A client that sent a DHCPDISCOVER with Rapid Commit option processes responses as described in RFC2131. However, if the client receives a DHCPACK message with a Rapid Commit option, it SHOULD process the DHCPACK immediately (without waiting for additional DHCPOFFER or DHCPACK messages) and use the address and configuration information contained therein.

A server that supports the Rapid Commit option MAY respond to a DHCPDISCOVER message that included the Rapid Commit option with a DHCPACK that includes the Rapid Commit option and fully committed address and configuration information. A server MUST NOT include the Rapid Commit option in any other messages.

The Rapid Commit option MUST NOT appear in a Parameter Request List option RFC2132.

All other DHCP operations are as documented in RFC2131.

Detailed Flow

The following is revised from Section 3.1 of RFC2131, which includes handling of the Rapid Commit option.

  1. The client broadcasts a DHCPDISCOVER message on its local
     physical subnet.  If the client supports the Rapid Commit
     option and intends to use the rapid commit capability, it
     includes a Rapid Commit option in the DHCPDISCOVER message.
     The DHCPDISCOVER message MAY include options that suggest
     values for the network address and lease duration.  BOOTP relay
     agents may pass the message on to DHCP servers not on the same
     physical subnet.
  2. Each server may respond with either a DHCPOFFER message or a
     DHCPACK message with the Rapid Commit option (the latter only
     if the DHCPDISCOVER contained a Rapid Commit option and the
     server's configuration policies allow use of Rapid Commit).
     These would include an available network address in the
     'yiaddr' field (and other configuration parameters in DHCP
     options).  Servers sending a DHCPOFFER need not reserve the
     offered network address, although the protocol will work more
     efficiently if the server avoids allocating the offered network
     address to another client.  Servers sending the DHCPACK message
     commit the binding for the client to persistent storage before
     sending the DHCPACK.  The combination of 'client identifier' or
     'chaddr' and assigned network address constitute a unique
     identifier for the client's lease and are used by both the
     client and server to identify a lease referred to in any DHCP
     messages.  The server transmits the DHCPOFFER or DHCPACK
     message to the client, if necessary by using the BOOTP relay
     agent.
     When allocating a new address, servers SHOULD check that the
     offered network address is not already in use; e.g., the server
     may probe the offered address with an ICMP Echo Request.
     Servers SHOULD be implemented so that network administrators
     MAY choose to disable probes of newly allocated addresses.
     Figure 3 in RFC2131 shows the flow for the normal 4-message
     exchange.  Figure 1 below shows the 2-message exchange.
                Server          Client          Server
            (not selected)                    (selected)
                  v               v               v
                  |               |               |
                  |     Begins initialization     |
                  |               |               |
                  | _____________/|\____________  |
                  |/DHCPDISCOVER  | DHCPDISCOVER \|
                  | w/Rapid Commit| w/Rapid Commit|
                  |               |               |
              Determines          |          Determines
             configuration        |         configuration
                  |               |     Commits configuration
                  |       Collects replies        |
                  |\              |  ____________/|
                  | \________     | / DHCPACK     |
                  | DHCPOFFER\    |/w/Rapid Commit|
                  |  (discarded)  |               |
                  |    Initialization complete    |
                  |               |               |
                  .               .               .
                  .               .               .
                  |               |               |
                  |      Graceful shutdown        |
                  |               |               |
                  |               |\_____________ |
                  |               |  DHCPRELEASE \|
                  |               |               |
                  |               |        Discards lease
                  |               |               |
                  v               v               v
        Figure 1 Timeline diagram when Rapid Commit is used
  3. The client receives one or more DHCPOFFER or DHCPACK (if the
     Rapid Commit option is sent in DHCPDISCOVER) messages from one
     or more servers.  If a DHCPACK (with the Rapid Commit option)
     is received, the client may immediately advance to step 5 below
     if the offered configuration parameters are acceptable.  The
     client may choose to wait for multiple responses.  The client
     chooses one server from which to request or accept
     configuration parameters, based on the configuration parameters
     offered in the DHCPOFFER and DHCPACK messages.  If the client
     chooses a DHCPACK, it advances to step 5.  Otherwise, the
     client broadcasts a DHCPREQUEST message that MUST include the
     'server identifier' option to indicate which server it has
     selected, the message MAY include other options specifying
     desired configuration values.  The 'requested IP address'
     option MUST be set to the value of 'yiaddr' in the DHCPOFFER
     message from the server.  This DHCPREQUEST message is broadcast
     and relayed through DHCP/BOOTP relay agents.  To help ensure
     that any BOOTP relay agents forward the DHCPREQUEST message to
     the same set of DHCP servers that received the original
     DHCPDISCOVER message, the DHCPREQUEST message MUST use the same
     value in the DHCP message header's 'secs' field and be sent to
     the same IP broadcast address as was the original DHCPDISCOVER
     message.  The client times out and retransmits the DHCPDISCOVER
     message if the client receives no DHCPOFFER messages.
  4. The servers receive the DHCPREQUEST broadcast from the client.
     Servers not selected by the DHCPREQUEST message use the message
     as notification that the client has declined those servers'
     offers.  The server selected in the DHCPREQUEST message commits
     the binding for the client to persistent storage and responds
     with a DHCPACK message containing the configuration parameters
     for the requesting client.  The combination of 'client
     identifier' or 'chaddr' and assigned network address constitute
     a unique identifier for the client's lease and are used by both
     the client and server to identify a lease referred to in any
     DHCP messages.  Any configuration parameters in the DHCPACK
     message SHOULD NOT conflict with those in the earlier DHCPOFFER
     message to which the client is responding.  The server SHOULD
     NOT check the offered network address at this point.  The
     'yiaddr' field in the DHCPACK messages is filled in with the
     selected network address.
     If the selected server is unable to satisfy the DHCPREQUEST
     message (e.g., the requested network address has been
     allocated), the server SHOULD respond with a DHCPNAK message.
     A server MAY choose to mark addresses offered to clients in
     DHCPOFFER messages as unavailable.  The server SHOULD mark an
     address offered to a client in a DHCPOFFER message as available
     if the server receives no DHCPREQUEST message from that client.
  5. The client receives the DHCPACK message with configuration
     parameters.  The client SHOULD perform a final check on the
     parameters (e.g., ARP for allocated network address), and it
     notes the duration of the lease specified in the DHCPACK
     message.  At this point, the client is configured.  If the
     client detects that the address is already in use (e.g.,
     through the use of ARP), the client MUST send a DHCPDECLINE
     message to the server, and it restarts the configuration
     process.  The client SHOULD wait a minimum of ten seconds
     before restarting the configuration process to avoid excessive
     network traffic in case of looping.
     If the client receives a DHCPNAK message, the client restarts
     the configuration process.
     The client times out and retransmits the DHCPREQUEST message if
     the client receives neither a DHCPACK nor a DHCPNAK message.
     The client retransmits the DHCPREQUEST according to the
     retransmission algorithm in section 4.1 of RFC2131.  The
     client should choose to retransmit the DHCPREQUEST enough times
     to give an adequate probability of contacting the server
     without causing the client (and the user of that client) to
     wait too long before giving up; e.g., a client retransmitting
     as described in section 4.1 of RFC2131 might retransmit the
     DHCPREQUEST message four times, for a total delay of 60
     seconds, before restarting the initialization procedure.  If
     the client receives neither a DHCPACK nor a DHCPNAK message
     after employing the retransmission algorithm, the client
     reverts to INIT state and restarts the initialization process.
     The client SHOULD notify the user that the initialization
     process has failed and is restarting.
  6. The client may choose to relinquish its lease on a network
     address by sending a DHCPRELEASE message to the server.  The
     client identifies the lease to be released with its 'client
     identifier' or 'chaddr' and network address in the DHCPRELEASE
     message.  If the client used a 'client identifier' when it
     obtained the lease, it MUST use the same 'client identifier' in
     the DHCPRELEASE message.

Administrative Considerations

Network administrators MUST only enable the use of Rapid Commit on a DHCP server if one of the following conditions is met:

  1. The server is the only server for the subnet.
  2. When multiple servers are present, they may each commit a
     binding for all clients, and therefore each server must have
     sufficient addresses available.

A server MAY allow configuration for a different (likely shorter) initial lease time for addresses assigned when Rapid Commit is used to expedite reclaiming addresses not used by clients.

Rapid Commit Option Format

The Rapid Commit option is used to indicate the use of the two- message exchange for address assignment. The code for the Rapid Commit option is 80. The format of the option is:

       Code  Len
     +-----+-----+
     |  80 |  0  |
     +-----+-----+

A client MUST include this option in a DHCPDISCOVER message if the client is prepared to perform the DHCPDISCOVER-DHCPACK message exchange described earlier.

A server MUST include this option in a DHCPACK message sent in a response to a DHCPDISCOVER message when completing the DHCPDISCOVER- DHCPACK message exchange.

IANA Considerations

IANA has assigned value 80 for the Rapid Commit option code in accordance with RFC2939.

Security Considerations

The concepts in this document do not significantly alter the security considerations for DHCP (see RFC2131 and RFC3118). However, use of this option could expedite denial of service attacks by allowing a mischievous client to consume all available addresses more rapidly or to do so without requiring two-way communication (as injecting DHCPDISCOVER messages with the Rapid Commit option is sufficient to cause a server to allocate an address).

References

Normative References

RFC2119 Bradner, S., "Key words for use in RFCs to Indicate

          Requirement Levels", BCP 14, RFC 2119, March 1997.

RFC2131 Droms, R., "Dynamic Host Configuration Protocol", RFC

          2131, March 1997.

Informative References

RFC2132 Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor

          Extensions", RFC 2132, March 1997.

RFC2939 Droms, R., "Procedures and IANA Guidelines for Definition

          of New DHCP Options and Message Types", BCP 43, RFC 2939,
          September 2000.

RFC3118 Droms, R. and W. Arbaugh, "Authentication for DHCP

          Messages", RFC 3118, June 2001.

RFC3315 Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,

          and M. Carney, "Dynamic Host Configuration Protocol for
          IPv6 (DHCPv6)", RFC 3315, July 2003.

Acknowledgements

Special thanks to Ted Lemon and Andre Kostur for their many valuable comments. Thanks to Ralph Droms for his review comments during WGLC. Thanks to Noh-Byung Park and Youngkeun Kim for their supports on this work.

Particularly, the authors would like to acknowledge the implementation contributions by Minho Lee of SAMSUNG Electronics.

Authors' Addresses

Soohong Daniel Park Mobile Platform Laboratory SAMSUNG Electronics 416, Maetan-3dong, Yeongtong-Gu Suwon, Korea

Phone: +82-31-200-4508 EMail: [email protected]

Pyungsoo Kim Mobile Platform Laboratory SAMSUNG Electronics 416, Maetan-3dong, Yeongtong-Gu Suwon, Korea

Phone: +82-31-200-4635 EMail: [email protected]

Bernie Volz Cisco Systems, Inc. 1414 Massachusetts Ave. Boxborough, MA 01719 USA

Phone: +1-978-936-0382 EMail: [email protected]

Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf- [email protected].

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.