RFC791

From RFC-Wiki


RFC: 791




                       INTERNET PROTOCOL
                                
                                
                     DARPA INTERNET PROGRAM
                                
                     PROTOCOL SPECIFICATION
                                
                                
                                
                         September 1981







                          prepared for
           Defense Advanced Research Projects Agency
            Information Processing Techniques Office
                     1400 Wilson Boulevard
                   Arlington, Virginia  22209




                               by
                 Information Sciences Institute
               University of Southern California
                       4676 Admiralty Way
               Marina del Rey, California  90291

September 1981

                                                   Internet Protocol


                       TABLE OF CONTENTS
PREFACE ........................................................ iii

INTRODUCTION ..................................................... 1

 1.1  Motivation .................................................... 1
 1.2  Scope ......................................................... 1
 1.3  Interfaces .................................................... 1
 1.4  Operation ..................................................... 2

OVERVIEW ......................................................... 5

 2.1  Relation to Other Protocols ................................... 9
 2.2  Model of Operation ............................................ 5
 2.3  Function Description .......................................... 7
 2.4  Gateways ...................................................... 9

SPECIFICATION ................................................... 11

 3.1  Internet Header Format ....................................... 11
 3.2  Discussion ................................................... 23
 3.3  Interfaces ................................................... 31

APPENDIX A: Examples & Scenarios ................................... 34 APPENDIX B: Data Transmission Order ................................ 39

GLOSSARY ............................................................ 41

REFERENCES .......................................................... 45











                                                            [Page i]
                                                      September 1981

Internet Protocol




























[Page ii]

September 1981

                                                   Internet Protocol


                            PREFACE


This document specifies the DoD Standard Internet Protocol. This document is based on six earlier editions of the ARPA Internet Protocol Specification, and the present text draws heavily from them. There have been many contributors to this work both in terms of concepts and in terms of text. This edition revises aspects of addressing, error handling, option codes, and the security, precedence, compartments, and handling restriction features of the internet protocol.

                                                       Jon Postel
                                                       Editor



















                                                          [Page iii]
                                                      September 1981


RFC: 791 Replaces: RFC 760 IENs 128, 123, 111, 80, 54, 44, 41, 28, 26

                       INTERNET PROTOCOL
                     DARPA INTERNET PROGRAM
                     PROTOCOL SPECIFICATION


                        1.  INTRODUCTION

Motivation

 The Internet Protocol is designed for use in interconnected systems of
 packet-switched computer communication networks.  Such a system has
 been called a "catenet" [1].  The internet protocol provides for
 transmitting blocks of data called datagrams from sources to
 destinations, where sources and destinations are hosts identified by
 fixed length addresses.  The internet protocol also provides for
 fragmentation and reassembly of long datagrams, if necessary, for
 transmission through "small packet" networks.

Scope

 The internet protocol is specifically limited in scope to provide the
 functions necessary to deliver a package of bits (an internet
 datagram) from a source to a destination over an interconnected system
 of networks.  There are no mechanisms to augment end-to-end data
 reliability, flow control, sequencing, or other services commonly
 found in host-to-host protocols.  The internet protocol can capitalize
 on the services of its supporting networks to provide various types
 and qualities of service.

Interfaces

 This protocol is called on by host-to-host protocols in an internet
 environment.  This protocol calls on local network protocols to carry
 the internet datagram to the next gateway or destination host.
 For example, a TCP module would call on the internet module to take a
 TCP segment (including the TCP header and user data) as the data
 portion of an internet datagram.  The TCP module would provide the
 addresses and other parameters in the internet header to the internet
 module as arguments of the call.  The internet module would then
 create an internet datagram and call on the local network interface to
 transmit the internet datagram.
 In the ARPANET case, for example, the internet module would call on a


                                                      September 1981

Internet Protocol Introduction


 local net module which would add the 1822 leader [2] to the internet
 datagram creating an ARPANET message to transmit to the IMP.  The
 ARPANET address would be derived from the internet address by the
 local network interface and would be the address of some host in the
 ARPANET, that host might be a gateway to other networks.

Operation

 The internet protocol implements two basic functions:  addressing and
 fragmentation.
 The internet modules use the addresses carried in the internet header
 to transmit internet datagrams toward their destinations.  The
 selection of a path for transmission is called routing.
 The internet modules use fields in the internet header to fragment and
 reassemble internet datagrams when necessary for transmission through
 "small packet" networks.
 The model of operation is that an internet module resides in each host
 engaged in internet communication and in each gateway that
 interconnects networks.  These modules share common rules for
 interpreting address fields and for fragmenting and assembling
 internet datagrams.  In addition, these modules (especially in
 gateways) have procedures for making routing decisions and other
 functions.
 The internet protocol treats each internet datagram as an independent
 entity unrelated to any other internet datagram.  There are no
 connections or logical circuits (virtual or otherwise).
 The internet protocol uses four key mechanisms in providing its
 service:  Type of Service, Time to Live, Options, and Header Checksum.
 The Type of Service is used to indicate the quality of the service
 desired.  The type of service is an abstract or generalized set of
 parameters which characterize the service choices provided in the
 networks that make up the internet.  This type of service indication
 is to be used by gateways to select the actual transmission parameters
 for a particular network, the network to be used for the next hop, or
 the next gateway when routing an internet datagram.
 The Time to Live is an indication of an upper bound on the lifetime of
 an internet datagram.  It is set by the sender of the datagram and
 reduced at the points along the route where it is processed.  If the
 time to live reaches zero before the internet datagram reaches its
 destination, the internet datagram is destroyed.  The time to live can
 be thought of as a self destruct time limit.


[Page 2]

September 1981

                                                   Internet Protocol
                                                        Introduction


 The Options provide for control functions needed or useful in some
 situations but unnecessary for the most common communications.  The
 options include provisions for timestamps, security, and special
 routing.
 The Header Checksum provides a verification that the information used
 in processing internet datagram has been transmitted correctly.  The
 data may contain errors.  If the header checksum fails, the internet
 datagram is discarded at once by the entity which detects the error.
 The internet protocol does not provide a reliable communication
 facility.  There are no acknowledgments either end-to-end or
 hop-by-hop.  There is no error control for data, only a header
 checksum.  There are no retransmissions.  There is no flow control.
 Errors detected may be reported via the Internet Control Message
 Protocol (ICMP) [3] which is implemented in the internet protocol
 module.

















                                                      September 1981

Internet Protocol




























[Page 4]

September 1981

                                                   Internet Protocol


                          2.  OVERVIEW

Relation to Other Protocols

 The following diagram illustrates the place of the internet protocol
 in the protocol hierarchy:


             +------+ +-----+ +-----+     +-----+  
             |Telnet| | FTP | | TFTP| ... | ... |  
             +------+ +-----+ +-----+     +-----+  
                   |   |         |           |     
                  +-----+     +-----+     +-----+  
                  | TCP |     | UDP | ... | ... |  
                  +-----+     +-----+     +-----+  
                     |           |           |     
                  +--------------------------+----+
                  |    Internet Protocol & ICMP   |
                  +--------------------------+----+
                                 |                 
                    +---------------------------+  
                    |   Local Network Protocol  |  
                    +---------------------------+  
                     Protocol Relationships
                           Figure 1.
 Internet protocol interfaces on one side to the higher level
 host-to-host protocols and on the other side to the local network
 protocol.  In this context a "local network" may be a small network in
 a building or a large network such as the ARPANET.

Model of Operation

 The  model of operation for transmitting a datagram from one
 application program to another is illustrated by the following
 scenario:
We suppose that this transmission will involve one intermediate
gateway.
The sending application program prepares its data and calls on its
local internet module to send that data as a datagram and passes the
destination address and other parameters as arguments of the call.
The internet module prepares a datagram header and attaches the data
to it.  The internet module determines a local network address for
this internet address, in this case it is the address of a gateway.


                                                      September 1981

Internet Protocol Overview


It sends this datagram and the local network address to the local
network interface.
The local network interface creates a local network header, and
attaches the datagram to it, then sends the result via the local
network.
The datagram arrives at a gateway host wrapped in the local network
header, the local network interface strips off this header, and
turns the datagram over to the internet module.  The internet module
determines from the internet address that the datagram is to be
forwarded to another host in a second network.  The internet module
determines a local net address for the destination host.  It calls
on the local network interface for that network to send the
datagram.
This local network interface creates a local network header and
attaches the datagram sending the result to the destination host.
At this destination host the datagram is stripped of the local net
header by the local network interface and handed to the internet
module.
The internet module determines that the datagram is for an
application program in this host.  It passes the data to the
application program in response to a system call, passing the source
address and other parameters as results of the call.


Application Application Program Program

     \                                                   /      
   Internet Module      Internet Module      Internet Module    
         \                 /       \                /           
         LNI-1          LNI-1      LNI-2         LNI-2          
            \           /             \          /              
           Local Network 1           Local Network 2            


                        Transmission Path
                            Figure 2




[Page 6]

September 1981

                                                   Internet Protocol
                                                            Overview


Function Description

 The function or purpose of Internet Protocol is to move datagrams
 through an interconnected set of networks.  This is done by passing
 the datagrams from one internet module to another until the
 destination is reached.  The internet modules reside in hosts and
 gateways in the internet system.  The datagrams are routed from one
 internet module to another through individual networks based on the
 interpretation of an internet address.  Thus, one important mechanism
 of the internet protocol is the internet address.
 In the routing of messages from one internet module to another,
 datagrams may need to traverse a network whose maximum packet size is
 smaller than the size of the datagram.  To overcome this difficulty, a
 fragmentation mechanism is provided in the internet protocol.
 Addressing
A distinction is made between names, addresses, and routes [4].   A
name indicates what we seek.  An address indicates where it is.  A
route indicates how to get there.  The internet protocol deals
primarily with addresses.  It is the task of higher level (i.e.,
host-to-host or application) protocols to make the mapping from
names to addresses.   The internet module maps internet addresses to
local net addresses.  It is the task of lower level (i.e., local net
or gateways) procedures to make the mapping from local net addresses
to routes.
Addresses are fixed length of four octets (32 bits).  An address
begins with a network number, followed by local address (called the
"rest" field).  There are three formats or classes of internet
addresses:  in class a, the high order bit is zero, the next 7 bits
are the network, and the last 24 bits are the local address; in
class b, the high order two bits are one-zero, the next 14 bits are
the network and the last 16 bits are the local address; in class c,
the high order three bits are one-one-zero, the next 21 bits are the
network and the last 8 bits are the local address.
Care must be taken in mapping internet addresses to local net
addresses; a single physical host must be able to act as if it were
several distinct hosts to the extent of using several distinct
internet addresses.  Some hosts will also have several physical
interfaces (multi-homing).
That is, provision must be made for a host to have several physical
interfaces to the network with each having several logical internet
addresses.



                                                      September 1981

Internet Protocol Overview


Examples of address mappings may be found in "Address Mappings" [5].
 Fragmentation
Fragmentation of an internet datagram is necessary when it
originates in a local net that allows a large packet size and must
traverse a local net that limits packets to a smaller size to reach
its destination.
An internet datagram can be marked "don't fragment."  Any internet
datagram so marked is not to be internet fragmented under any
circumstances.  If internet datagram marked don't fragment cannot be
delivered to its destination without fragmenting it, it is to be
discarded instead.
Fragmentation, transmission and reassembly across a local network
which is invisible to the internet protocol module is called
intranet fragmentation and may be used [6].
The internet fragmentation and reassembly procedure needs to be able
to break a datagram into an almost arbitrary number of pieces that
can be later reassembled.  The receiver of the fragments uses the
identification field to ensure that fragments of different datagrams
are not mixed.  The fragment offset field tells the receiver the
position of a fragment in the original datagram.  The fragment
offset and length determine the portion of the original datagram
covered by this fragment.  The more-fragments flag indicates (by
being reset) the last fragment.  These fields provide sufficient
information to reassemble datagrams.
The identification field is used to distinguish the fragments of one
datagram from those of another.  The originating protocol module of
an internet datagram sets the identification field to a value that
must be unique for that source-destination pair and protocol for the
time the datagram will be active in the internet system.  The
originating protocol module of a complete datagram sets the
more-fragments flag to zero and the fragment offset to zero.
To fragment a long internet datagram, an internet protocol module
(for example, in a gateway), creates two new internet datagrams and
copies the contents of the internet header fields from the long
datagram into both new internet headers.  The data of the long
datagram is divided into two portions on a 8 octet (64 bit) boundary
(the second portion might not be an integral multiple of 8 octets,
but the first must be).  Call the number of 8 octet blocks in the
first portion NFB (for Number of Fragment Blocks).  The first
portion of the data is placed in the first new internet datagram,
and the total length field is set to the length of the first


[Page 8]

September 1981

                                                   Internet Protocol
                                                            Overview


datagram.  The more-fragments flag is set to one.  The second
portion of the data is placed in the second new internet datagram,
and the total length field is set to the length of the second
datagram.  The more-fragments flag carries the same value as the
long datagram.  The fragment offset field of the second new internet
datagram is set to the value of that field in the long datagram plus
NFB.
This procedure can be generalized for an n-way split, rather than
the two-way split described.
To assemble the fragments of an internet datagram, an internet
protocol module (for example at a destination host) combines
internet datagrams that all have the same value for the four fields:
identification, source, destination, and protocol.  The combination
is done by placing the data portion of each fragment in the relative
position indicated by the fragment offset in that fragment's
internet header.  The first fragment will have the fragment offset
zero, and the last fragment will have the more-fragments flag reset
to zero.

Gateways

 Gateways implement internet protocol to forward datagrams between
 networks.  Gateways also implement the Gateway to Gateway Protocol
 (GGP) [7] to coordinate routing and other internet control
 information.
 In a gateway the higher level protocols need not be implemented and
 the GGP functions are added to the IP module.


               +-------------------------------+   
               | Internet Protocol & ICMP & GGP|   
               +-------------------------------+   
                       |                 |         
             +---------------+   +---------------+ 
             |   Local Net   |   |   Local Net   | 
             +---------------+   +---------------+ 
                       Gateway Protocols
                           Figure 3.





                                                      September 1981

Internet Protocol




























[Page 10]

September 1981

                                                   Internet Protocol


                       3.  SPECIFICATION

Internet Header Format

 A summary of the contents of the internet header follows:


0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| IHL |Type of Service| Total Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification |Flags| Fragment Offset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time to Live | Protocol | Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Example Internet Datagram Header
                           Figure 4.
 Note that each tick mark represents one bit position.
 Version:  4 bits
The Version field indicates the format of the internet header.  This
document describes version 4.
 IHL:  4 bits
Internet Header Length is the length of the internet header in 32
bit words, and thus points to the beginning of the data.  Note that
the minimum value for a correct header is 5.







                                                      September 1981

Internet Protocol Specification


 Type of Service:  8 bits
The Type of Service provides an indication of the abstract
parameters of the quality of service desired.  These parameters are
to be used to guide the selection of the actual service parameters
when transmitting a datagram through a particular network.  Several
networks offer service precedence, which somehow treats high
precedence traffic as more important than other traffic (generally
by accepting only traffic above a certain precedence at time of high
load).  The major choice is a three way tradeoff between low-delay,
high-reliability, and high-throughput.
  Bits 0-2:  Precedence.
  Bit    3:  0 = Normal Delay,      1 = Low Delay.
  Bits   4:  0 = Normal Throughput, 1 = High Throughput.
  Bits   5:  0 = Normal Relibility, 1 = High Relibility.
  Bit  6-7:  Reserved for Future Use.
     0     1     2     3     4     5     6     7
  +-----+-----+-----+-----+-----+-----+-----+-----+
  |                 |     |     |     |     |     |
  |   PRECEDENCE    |  D  |  T  |  R  |  0  |  0  |
  |                 |     |     |     |     |     |
  +-----+-----+-----+-----+-----+-----+-----+-----+
    Precedence
      111 - Network Control
      110 - Internetwork Control
      101 - CRITIC/ECP
      100 - Flash Override
      011 - Flash
      010 - Immediate
      001 - Priority
      000 - Routine
The use of the Delay, Throughput, and Reliability indications may
increase the cost (in some sense) of the service.  In many networks
better performance for one of these parameters is coupled with worse
performance on another.  Except for very unusual cases at most two
of these three indications should be set.
The type of service is used to specify the treatment of the datagram
during its transmission through the internet system.  Example
mappings of the internet type of service to the actual service
provided on networks such as AUTODIN II, ARPANET, SATNET, and PRNET
is given in "Service Mappings" [8].


[Page 12]

September 1981

                                                   Internet Protocol
                                                       Specification


The Network Control precedence designation is intended to be used
within a network only.  The actual use and control of that
designation is up to each network. The Internetwork Control
designation is intended for use by gateway control originators only.
If the actual use of these precedence designations is of concern to
a particular network, it is the responsibility of that network to
control the access to, and use of, those precedence designations.
 Total Length:  16 bits
Total Length is the length of the datagram, measured in octets,
including internet header and data.  This field allows the length of
a datagram to be up to 65,535 octets.  Such long datagrams are
impractical for most hosts and networks.  All hosts must be prepared
to accept datagrams of up to 576 octets (whether they arrive whole
or in fragments).  It is recommended that hosts only send datagrams
larger than 576 octets if they have assurance that the destination
is prepared to accept the larger datagrams.
The number 576 is selected to allow a reasonable sized data block to
be transmitted in addition to the required header information.  For
example, this size allows a data block of 512 octets plus 64 header
octets to fit in a datagram.  The maximal internet header is 60
octets, and a typical internet header is 20 octets, allowing a
margin for headers of higher level protocols.
 Identification:  16 bits
An identifying value assigned by the sender to aid in assembling the
fragments of a datagram.
 Flags:  3 bits
Various Control Flags.
  Bit 0: reserved, must be zero
  Bit 1: (DF) 0 = May Fragment,  1 = Don't Fragment.
  Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.
      0   1   2
    +---+---+---+
    |   | D | M |
    | 0 | F | F |
    +---+---+---+
 Fragment Offset:  13 bits
This field indicates where in the datagram this fragment belongs.


                                                      September 1981

Internet Protocol Specification


The fragment offset is measured in units of 8 octets (64 bits).  The
first fragment has offset zero.
 Time to Live:  8 bits
This field indicates the maximum time the datagram is allowed to
remain in the internet system.  If this field contains the value
zero, then the datagram must be destroyed.  This field is modified
in internet header processing.  The time is measured in units of
seconds, but since every module that processes a datagram must
decrease the TTL by at least one even if it process the datagram in
less than a second, the TTL must be thought of only as an upper
bound on the time a datagram may exist.  The intention is to cause
undeliverable datagrams to be discarded, and to bound the maximum
datagram lifetime.
 Protocol:  8 bits
This field indicates the next level protocol used in the data
portion of the internet datagram.  The values for various protocols
are specified in "Assigned Numbers" [9].
 Header Checksum:  16 bits
A checksum on the header only.  Since some header fields change
(e.g., time to live), this is recomputed and verified at each point
that the internet header is processed.
The checksum algorithm is:
  The checksum field is the 16 bit one's complement of the one's
  complement sum of all 16 bit words in the header.  For purposes of
  computing the checksum, the value of the checksum field is zero.
This is a simple to compute checksum and experimental evidence
indicates it is adequate, but it is provisional and may be replaced
by a CRC procedure, depending on further experience.
 Source Address:  32 bits
The source address.  See section 3.2.
 Destination Address:  32 bits
The destination address.  See section 3.2.



[Page 14]

September 1981

                                                   Internet Protocol
                                                       Specification


 Options:  variable
The options may appear or not in datagrams.  They must be
implemented by all IP modules (host and gateways).  What is optional
is their transmission in any particular datagram, not their
implementation.
In some environments the security option may be required in all
datagrams.
The option field is variable in length.  There may be zero or more
options.  There are two cases for the format of an option:
  Case 1:  A single octet of option-type.
  Case 2:  An option-type octet, an option-length octet, and the
           actual option-data octets.
The option-length octet counts the option-type octet and the
option-length octet as well as the option-data octets.
The option-type octet is viewed as having 3 fields:
  1 bit   copied flag,
  2 bits  option class,
  5 bits  option number.
The copied flag indicates that this option is copied into all
fragments on fragmentation.
  0 = not copied
  1 = copied
The option classes are:
  0 = control
  1 = reserved for future use
  2 = debugging and measurement
  3 = reserved for future use







                                                      September 1981

Internet Protocol Specification


The following internet options are defined:
  CLASS NUMBER LENGTH DESCRIPTION
  ----- ------ ------ -----------
    0     0      -    End of Option list.  This option occupies only
                      1 octet; it has no length octet.
    0     1      -    No Operation.  This option occupies only 1
                      octet; it has no length octet.
    0     2     11    Security.  Used to carry Security,
                      Compartmentation, User Group (TCC), and
                      Handling Restriction Codes compatible with DOD
                      requirements.
    0     3     var.  Loose Source Routing.  Used to route the
                      internet datagram based on information
                      supplied by the source.
    0     9     var.  Strict Source Routing.  Used to route the
                      internet datagram based on information
                      supplied by the source.
    0     7     var.  Record Route.  Used to trace the route an
                      internet datagram takes.
    0     8      4    Stream ID.  Used to carry the stream
                      identifier.
    2     4     var.  Internet Timestamp.


Specific Option Definitions
  End of Option List
    +--------+
    |00000000|
    +--------+
      Type=0
    This option indicates the end of the option list.  This might
    not coincide with the end of the internet header according to
    the internet header length.  This is used at the end of all
    options, not the end of each option, and need only be used if
    the end of the options would not otherwise coincide with the end
    of the internet header.
    May be copied, introduced, or deleted on fragmentation, or for
    any other reason.




[Page 16]

September 1981

                                                   Internet Protocol
                                                       Specification


  No Operation
    +--------+
    |00000001|
    +--------+
      Type=1
    This option may be used between options, for example, to align
    the beginning of a subsequent option on a 32 bit boundary.
    May be copied, introduced, or deleted on fragmentation, or for
    any other reason.
  Security
    This option provides a way for hosts to send security,
    compartmentation, handling restrictions, and TCC (closed user
    group) parameters.  The format for this option is as follows:
      +--------+--------+---//---+---//---+---//---+---//---+
      |10000010|00001011|SSS  SSS|CCC  CCC|HHH  HHH|  TCC   |
      +--------+--------+---//---+---//---+---//---+---//---+
       Type=130 Length=11
    Security (S field):  16 bits
      Specifies one of 16 levels of security (eight of which are
      reserved for future use).
        00000000 00000000 - Unclassified
        11110001 00110101 - Confidential
        01111000 10011010 - EFTO
        10111100 01001101 - MMMM
        01011110 00100110 - PROG
        10101111 00010011 - Restricted
        11010111 10001000 - Secret
        01101011 11000101 - Top Secret
        00110101 11100010 - (Reserved for future use)
        10011010 11110001 - (Reserved for future use)
        01001101 01111000 - (Reserved for future use)
        00100100 10111101 - (Reserved for future use)
        00010011 01011110 - (Reserved for future use)
        10001001 10101111 - (Reserved for future use)
        11000100 11010110 - (Reserved for future use)
        11100010 01101011 - (Reserved for future use)




                                                      September 1981

Internet Protocol Specification


    Compartments (C field):  16 bits
      An all zero value is used when the information transmitted is
      not compartmented.  Other values for the compartments field
      may be obtained from the Defense Intelligence Agency.
    Handling Restrictions (H field):  16 bits
      The values for the control and release markings are
      alphanumeric digraphs and are defined in the Defense
      Intelligence Agency Manual DIAM 65-19, "Standard Security
      Markings".
    Transmission Control Code (TCC field):  24 bits
      Provides a means to segregate traffic and define controlled
      communities of interest among subscribers. The TCC values are
      trigraphs, and are available from HQ DCA Code 530.
    Must be copied on fragmentation.  This option appears at most
    once in a datagram.
  Loose Source and Record Route
    +--------+--------+--------+---------//--------+
    |10000011| length | pointer|     route data    |
    +--------+--------+--------+---------//--------+
     Type=131
    The loose source and record route (LSRR) option provides a means
    for the source of an internet datagram to supply routing
    information to be used by the gateways in forwarding the
    datagram to the destination, and to record the route
    information.
    The option begins with the option type code.  The second octet
    is the option length which includes the option type code and the
    length octet, the pointer octet, and length-3 octets of route
    data.  The third octet is the pointer into the route data
    indicating the octet which begins the next source address to be
    processed.  The pointer is relative to this option, and the
    smallest legal value for the pointer is 4.
    A route data is composed of a series of internet addresses.
    Each internet address is 32 bits or 4 octets.  If the pointer is
    greater than the length, the source route is empty (and the
    recorded route full) and the routing is to be based on the
    destination address field.


[Page 18]

September 1981

                                                   Internet Protocol
                                                       Specification


    If the address in destination address field has been reached and
    the pointer is not greater than the length, the next address in
    the source route replaces the address in the destination address
    field, and the recorded route address replaces the source
    address just used, and pointer is increased by four.
    The recorded route address is the internet module's own internet
    address as known in the environment into which this datagram is
    being forwarded.
    This procedure of replacing the source route with the recorded
    route (though it is in the reverse of the order it must be in to
    be used as a source route) means the option (and the IP header
    as a whole) remains a constant length as the datagram progresses
    through the internet.
    This option is a loose source route because the gateway or host
    IP is allowed to use any route of any number of other
    intermediate gateways to reach the next address in the route.
    Must be copied on fragmentation.  Appears at most once in a
    datagram.
  Strict Source and Record Route
    +--------+--------+--------+---------//--------+
    |10001001| length | pointer|     route data    |
    +--------+--------+--------+---------//--------+
     Type=137
    The strict source and record route (SSRR) option provides a
    means for the source of an internet datagram to supply routing
    information to be used by the gateways in forwarding the
    datagram to the destination, and to record the route
    information.
    The option begins with the option type code.  The second octet
    is the option length which includes the option type code and the
    length octet, the pointer octet, and length-3 octets of route
    data.  The third octet is the pointer into the route data
    indicating the octet which begins the next source address to be
    processed.  The pointer is relative to this option, and the
    smallest legal value for the pointer is 4.
    A route data is composed of a series of internet addresses.
    Each internet address is 32 bits or 4 octets.  If the pointer is
    greater than the length, the source route is empty (and the



                                                      September 1981

Internet Protocol Specification


    recorded route full) and the routing is to be based on the
    destination address field.
    If the address in destination address field has been reached and
    the pointer is not greater than the length, the next address in
    the source route replaces the address in the destination address
    field, and the recorded route address replaces the source
    address just used, and pointer is increased by four.
    The recorded route address is the internet module's own internet
    address as known in the environment into which this datagram is
    being forwarded.
    This procedure of replacing the source route with the recorded
    route (though it is in the reverse of the order it must be in to
    be used as a source route) means the option (and the IP header
    as a whole) remains a constant length as the datagram progresses
    through the internet.
    This option is a strict source route because the gateway or host
    IP must send the datagram directly to the next address in the
    source route through only the directly connected network
    indicated in the next address to reach the next gateway or host
    specified in the route.
    Must be copied on fragmentation.  Appears at most once in a
    datagram.
  Record Route
    +--------+--------+--------+---------//--------+
    |00000111| length | pointer|     route data    |
    +--------+--------+--------+---------//--------+
      Type=7
    The record route option provides a means to record the route of
    an internet datagram.
    The option begins with the option type code.  The second octet
    is the option length which includes the option type code and the
    length octet, the pointer octet, and length-3 octets of route
    data.  The third octet is the pointer into the route data
    indicating the octet which begins the next area to store a route
    address.  The pointer is relative to this option, and the
    smallest legal value for the pointer is 4.
    A recorded route is composed of a series of internet addresses.
    Each internet address is 32 bits or 4 octets.  If the pointer is


[Page 20]

September 1981

                                                   Internet Protocol
                                                       Specification


    greater than the length, the recorded route data area is full.
    The originating host must compose this option with a large
    enough route data area to hold all the address expected.  The
    size of the option does not change due to adding addresses.  The
    intitial contents of the route data area must be zero.
    When an internet module routes a datagram it checks to see if
    the record route option is present.  If it is, it inserts its
    own internet address as known in the environment into which this
    datagram is being forwarded into the recorded route begining at
    the octet indicated by the pointer, and increments the pointer
    by four.
    If the route data area is already full (the pointer exceeds the
    length) the datagram is forwarded without inserting the address
    into the recorded route.  If there is some room but not enough
    room for a full address to be inserted, the original datagram is
    considered to be in error and is discarded.  In either case an
    ICMP parameter problem message may be sent to the source
    host [3].
    Not copied on fragmentation, goes in first fragment only.
    Appears at most once in a datagram.
  Stream Identifier
    +--------+--------+--------+--------+
    |10001000|00000010|    Stream ID    |
    +--------+--------+--------+--------+
     Type=136 Length=4
    This option provides a way for the 16-bit SATNET stream
    identifier to be carried through networks that do not support
    the stream concept.
    Must be copied on fragmentation.  Appears at most once in a
    datagram.








                                                      September 1981

Internet Protocol Specification


  Internet Timestamp
    +--------+--------+--------+--------+
    |01000100| length | pointer|oflw|flg|
    +--------+--------+--------+--------+
    |         internet address          |
    +--------+--------+--------+--------+
    |             timestamp             |
    +--------+--------+--------+--------+
    |                 .                 |
                      .
                      .
    Type = 68
    The Option Length is the number of octets in the option counting
    the type, length, pointer, and overflow/flag octets (maximum
    length 40).
    The Pointer is the number of octets from the beginning of this
    option to the end of timestamps plus one (i.e., it points to the
    octet beginning the space for next timestamp).  The smallest
    legal value is 5.  The timestamp area is full when the pointer
    is greater than the length.
    The Overflow (oflw) [4 bits] is the number of IP modules that
    cannot register timestamps due to lack of space.
    The Flag (flg) [4 bits] values are
      0 -- time stamps only, stored in consecutive 32-bit words,
      1 -- each timestamp is preceded with internet address of the
           registering entity,
      3 -- the internet address fields are prespecified.  An IP
           module only registers its timestamp if it matches its own
           address with the next specified internet address.
    The Timestamp is a right-justified, 32-bit timestamp in
    milliseconds since midnight UT.  If the time is not available in
    milliseconds or cannot be provided with respect to midnight UT
    then any time may be inserted as a timestamp provided the high
    order bit of the timestamp field is set to one to indicate the
    use of a non-standard value.
    The originating host must compose this option with a large
    enough timestamp data area to hold all the timestamp information
    expected.  The size of the option does not change due to adding


[Page 22]

September 1981

                                                   Internet Protocol
                                                       Specification


    timestamps.  The intitial contents of the timestamp data area
    must be zero or internet address/zero pairs.
    If the timestamp data area is already full (the pointer exceeds
    the length) the datagram is forwarded without inserting the
    timestamp, but the overflow count is incremented by one.
    If there is some room but not enough room for a full timestamp
    to be inserted, or the overflow count itself overflows, the
    original datagram is considered to be in error and is discarded.
    In either case an ICMP parameter problem message may be sent to
    the source host [3].
    The timestamp option is not copied upon fragmentation.  It is
    carried in the first fragment.  Appears at most once in a
    datagram.
 Padding:  variable
The internet header padding is used to ensure that the internet
header ends on a 32 bit boundary.  The padding is zero.

Discussion

 The implementation of a protocol must be robust.  Each implementation
 must expect to interoperate with others created by different
 individuals.  While the goal of this specification is to be explicit
 about the protocol there is the possibility of differing
 interpretations.  In general, an implementation must be conservative
 in its sending behavior, and liberal in its receiving behavior.  That
 is, it must be careful to send well-formed datagrams, but must accept
 any datagram that it can interpret (e.g., not object to technical
 errors where the meaning is still clear).
 The basic internet service is datagram oriented and provides for the
 fragmentation of datagrams at gateways, with reassembly taking place
 at the destination internet protocol module in the destination host.
 Of course, fragmentation and reassembly of datagrams within a network
 or by private agreement between the gateways of a network is also
 allowed since this is transparent to the internet protocols and the
 higher-level protocols.  This transparent type of fragmentation and
 reassembly is termed "network-dependent" (or intranet) fragmentation
 and is not discussed further here.
 Internet addresses distinguish sources and destinations to the host
 level and provide a protocol field as well.  It is assumed that each
 protocol will provide for whatever multiplexing is necessary within a
 host.


                                                      September 1981

Internet Protocol Specification


 Addressing
To provide for flexibility in assigning address to networks and
allow for the  large number of small to intermediate sized networks
the interpretation of the address field is coded to specify a small
number of networks with a large number of host, a moderate number of
networks with a moderate number of hosts, and a large number of
networks with a small number of hosts.  In addition there is an
escape code for extended addressing mode.
Address Formats:
  High Order Bits   Format                           Class
  ---------------   -------------------------------  -----
        0            7 bits of net, 24 bits of host    a
        10          14 bits of net, 16 bits of host    b
        110         21 bits of net,  8 bits of host    c
        111         escape to extended addressing mode
  A value of zero in the network field means this network.  This is
  only used in certain ICMP messages.  The extended addressing mode
  is undefined.  Both of these features are reserved for future use.
The actual values assigned for network addresses is given in
"Assigned Numbers" [9].
The local address, assigned by the local network, must allow for a
single physical host to act as several distinct internet hosts.
That is, there must be a mapping between internet host addresses and
network/host interfaces that allows several internet addresses to
correspond to one interface.  It must also be allowed for a host to
have several physical interfaces and to treat the datagrams from
several of them as if they were all addressed to a single host.
Address mappings between internet addresses and addresses for
ARPANET, SATNET, PRNET, and other networks are described in "Address
Mappings" [5].
 Fragmentation and Reassembly.
The internet identification field (ID) is used together with the
source and destination address, and the protocol fields, to identify
datagram fragments for reassembly.
The More Fragments flag bit (MF) is set if the datagram is not the
last fragment.  The Fragment Offset field identifies the fragment
location, relative to the beginning of the original unfragmented
datagram.  Fragments are counted in units of 8 octets.  The


[Page 24]

September 1981

                                                   Internet Protocol
                                                       Specification


fragmentation strategy is designed so than an unfragmented datagram
has all zero fragmentation information (MF = 0, fragment offset =
0).  If an internet datagram is fragmented, its data portion must be
broken on 8 octet boundaries.
This format allows 2**13 = 8192 fragments of 8 octets each for a
total of 65,536 octets.  Note that this is consistent with the the
datagram total length field (of course, the header is counted in the
total length and not in the fragments).
When fragmentation occurs, some options are copied, but others
remain with the first fragment only.
Every internet module must be able to forward a datagram of 68
octets without further fragmentation.  This is because an internet
header may be up to 60 octets, and the minimum fragment is 8 octets.
Every internet destination must be able to receive a datagram of 576
octets either in one piece or in fragments to be reassembled.
The fields which may be affected by fragmentation include:
  (1) options field
  (2) more fragments flag
  (3) fragment offset
  (4) internet header length field
  (5) total length field
  (6) header checksum
If the Don't Fragment flag (DF) bit is set, then internet
fragmentation of this datagram is NOT permitted, although it may be
discarded.  This can be used to prohibit fragmentation in cases
where the receiving host does not have sufficient resources to
reassemble internet fragments.
One example of use of the Don't Fragment feature is to down line
load a small host.  A small host could have a boot strap program
that accepts a datagram stores it in memory and then executes it.
The fragmentation and reassembly procedures are most easily
described by examples.  The following procedures are example
implementations.
General notation in the following pseudo programs: "=<" means "less
than or equal", "#" means "not equal", "=" means "equal", "<-" means
"is set to".  Also, "x to y" includes x and excludes y; for example,
"4 to 7" would include 4, 5, and 6 (but not 7).



                                                      September 1981

Internet Protocol Specification


An Example Fragmentation Procedure
  The maximum sized datagram that can be transmitted through the
  next network is called the maximum transmission unit (MTU).
  If the total length is less than or equal the maximum transmission
  unit then submit this datagram to the next step in datagram
  processing; otherwise cut the datagram into two fragments, the
  first fragment being the maximum size, and the second fragment
  being the rest of the datagram.  The first fragment is submitted
  to the next step in datagram processing, while the second fragment
  is submitted to this procedure in case it is still too large.
  Notation:
    FO    -  Fragment Offset
    IHL   -  Internet Header Length
    DF    -  Don't Fragment flag
    MF    -  More Fragments flag
    TL    -  Total Length
    OFO   -  Old Fragment Offset
    OIHL  -  Old Internet Header Length
    OMF   -  Old More Fragments flag
    OTL   -  Old Total Length
    NFB   -  Number of Fragment Blocks
    MTU   -  Maximum Transmission Unit
  Procedure:
    IF TL =< MTU THEN Submit this datagram to the next step
         in datagram processing ELSE IF DF = 1 THEN discard the
    datagram ELSE
    To produce the first fragment:
    (1)  Copy the original internet header;
    (2)  OIHL <- IHL; OTL <- TL; OFO <- FO; OMF <- MF;
    (3)  NFB <- (MTU-IHL*4)/8;
    (4)  Attach the first NFB*8 data octets;
    (5)  Correct the header:
         MF <- 1;  TL <- (IHL*4)+(NFB*8);
         Recompute Checksum;
    (6)  Submit this fragment to the next step in
         datagram processing;
    To produce the second fragment:
    (7)  Selectively copy the internet header (some options
         are not copied, see option definitions);
    (8)  Append the remaining data;
    (9)  Correct the header:
         IHL <- (((OIHL*4)-(length of options not copied))+3)/4;


[Page 26]

September 1981

                                                   Internet Protocol
                                                       Specification


         TL <- OTL - NFB*8 - (OIHL-IHL)*4);
         FO <- OFO + NFB;  MF <- OMF;  Recompute Checksum;
    (10) Submit this fragment to the fragmentation test; DONE.
  In the above procedure each fragment (except the last) was made
  the maximum allowable size.  An alternative might produce less
  than the maximum size datagrams.  For example, one could implement
  a fragmentation procedure that repeatly divided large datagrams in
  half until the resulting fragments were less than the maximum
  transmission unit size.
An Example Reassembly Procedure
  For each datagram the buffer identifier is computed as the
  concatenation of the source, destination, protocol, and
  identification fields.  If this is a whole datagram (that is both
  the fragment offset and the more fragments  fields are zero), then
  any reassembly resources associated with this buffer identifier
  are released and the datagram is forwarded to the next step in
  datagram processing.
  If no other fragment with this buffer identifier is on hand then
  reassembly resources are allocated.  The reassembly resources
  consist of a data buffer, a header buffer, a fragment block bit
  table, a total data length field, and a timer.  The data from the
  fragment is placed in the data buffer according to its fragment
  offset and length, and bits are set in the fragment block bit
  table corresponding to the fragment blocks received.
  If this is the first fragment (that is the fragment offset is
  zero)  this header is placed in the header buffer.  If this is the
  last fragment ( that is the more fragments field is zero) the
  total data length is computed.  If this fragment completes the
  datagram (tested by checking the bits set in the fragment block
  table), then the datagram is sent to the next step in datagram
  processing; otherwise the timer is set to the maximum of the
  current timer value and the value of the time to live field from
  this fragment; and the reassembly routine gives up control.
  If the timer runs out, the all reassembly resources for this
  buffer identifier are released.  The initial setting of the timer
  is a lower bound on the reassembly waiting time.  This is because
  the waiting time will be increased if the Time to Live in the
  arriving fragment is greater than the current timer value but will
  not be decreased if it is less.  The maximum this timer value
  could reach is the maximum time to live (approximately 4.25
  minutes).  The current recommendation for the initial timer
  setting is 15 seconds.  This may be changed as experience with


                                                      September 1981

Internet Protocol Specification


  this protocol accumulates.  Note that the choice of this parameter
  value is related to the buffer capacity available and the data
  rate of the transmission medium; that is, data rate times timer
  value equals buffer size (e.g., 10Kb/s X 15s = 150Kb).
  Notation:
    FO    -  Fragment Offset
    IHL   -  Internet Header Length
    MF    -  More Fragments flag
    TTL   -  Time To Live
    NFB   -  Number of Fragment Blocks
    TL    -  Total Length
    TDL   -  Total Data Length
    BUFID -  Buffer Identifier
    RCVBT -  Fragment Received Bit Table
    TLB   -  Timer Lower Bound
  Procedure:
    (1)  BUFID <- source|destination|protocol|identification;
    (2)  IF FO = 0 AND MF = 0
    (3)     THEN IF buffer with BUFID is allocated
    (4)             THEN flush all reassembly for this BUFID;
    (5)          Submit datagram to next step; DONE.
    (6)     ELSE IF no buffer with BUFID is allocated
    (7)             THEN allocate reassembly resources
                         with BUFID;
                         TIMER <- TLB; TDL <- 0;
    (8)          put data from fragment into data buffer with
                 BUFID from octet FO*8 to
                                     octet (TL-(IHL*4))+FO*8;
    (9)          set RCVBT bits from FO
                                    to FO+((TL-(IHL*4)+7)/8);
    (10)         IF MF = 0 THEN TDL <- TL-(IHL*4)+(FO*8)
    (11)         IF FO = 0 THEN put header in header buffer
    (12)         IF TDL # 0
    (13)          AND all RCVBT bits from 0
                                         to (TDL+7)/8 are set
    (14)            THEN TL <- TDL+(IHL*4)
    (15)                 Submit datagram to next step;
    (16)                 free all reassembly resources
                         for this BUFID; DONE.
    (17)         TIMER <- MAX(TIMER,TTL);
    (18)         give up until next fragment or timer expires;
    (19) timer expires: flush all reassembly with this BUFID; DONE.
  In the case that two or more fragments contain the same data


[Page 28]

September 1981

                                                   Internet Protocol
                                                       Specification


  either identically or through a partial overlap, this procedure
  will use the more recently arrived copy in the data buffer and
  datagram delivered.
 Identification
The choice of the Identifier for a datagram is based on the need to
provide a way to uniquely identify the fragments of a particular
datagram.  The protocol module assembling fragments judges fragments
to belong to the same datagram if they have the same source,
destination, protocol, and Identifier.  Thus, the sender must choose
the Identifier to be unique for this source, destination pair and
protocol for the time the datagram (or any fragment of it) could be
alive in the internet.
It seems then that a sending protocol module needs to keep a table
of Identifiers, one entry for each destination it has communicated
with in the last maximum packet lifetime for the internet.
However, since the Identifier field allows 65,536 different values,
some host may be able to simply use unique identifiers independent
of destination.
It is appropriate for some higher level protocols to choose the
identifier. For example, TCP protocol modules may retransmit an
identical TCP segment, and the probability for correct reception
would be enhanced if the retransmission carried the same identifier
as the original transmission since fragments of either datagram
could be used to construct a correct TCP segment.
 Type of Service
The type of service (TOS) is for internet service quality selection.
The type of service is specified along the abstract parameters
precedence, delay, throughput, and reliability.  These abstract
parameters are to be mapped into the actual service parameters of
the particular networks the datagram traverses.
Precedence.  An independent measure of the importance of this
datagram.
Delay.  Prompt delivery is important for datagrams with this
indication.
Throughput.  High data rate is important for datagrams with this
indication.



                                                      September 1981

Internet Protocol Specification


Reliability.  A higher level of effort to ensure delivery is
important for datagrams with this indication.
For example, the ARPANET has a priority bit, and a choice between
"standard" messages (type 0) and "uncontrolled" messages (type 3),
(the choice between single packet and multipacket messages can also
be considered a service parameter). The uncontrolled messages tend
to be less reliably delivered and suffer less delay.  Suppose an
internet datagram is to be sent through the ARPANET.  Let the
internet type of service be given as:
  Precedence:    5
  Delay:         0
  Throughput:    1
  Reliability:   1
In this example, the mapping of these parameters to those available
for the ARPANET would be  to set the ARPANET priority bit on since
the Internet precedence is in the upper half of its range, to select
standard messages since the throughput and reliability requirements
are indicated and delay is not.  More details are given on service
mappings in "Service Mappings" [8].
 Time to Live
The time to live is set by the sender to the maximum time the
datagram is allowed to be in the internet system.  If the datagram
is in the internet system longer than the time to live, then the
datagram must be destroyed.
This field must be decreased at each point that the internet header
is processed to reflect the time spent processing the datagram.
Even if no local information is available on the time actually
spent, the field must be decremented by 1.  The time is measured in
units of seconds (i.e. the value 1 means one second).  Thus, the
maximum time to live is 255 seconds or 4.25 minutes.  Since every
module that processes a datagram must decrease the TTL by at least
one even if it process the datagram in less than a second, the TTL
must be thought of only as an upper bound on the time a datagram may
exist.  The intention is to cause undeliverable datagrams to be
discarded, and to bound the maximum datagram lifetime.
Some higher level reliable connection protocols are based on
assumptions that old duplicate datagrams will not arrive after a
certain time elapses.  The TTL is a way for such protocols to have
an assurance that their assumption is met.



[Page 30]

September 1981

                                                   Internet Protocol
                                                       Specification


 Options
The options are optional in each datagram, but required in
implementations.  That is, the presence or absence of an option is
the choice of the sender, but each internet module must be able to
parse every option.  There can be several options present in the
option field.
The options might not end on a 32-bit boundary.  The internet header
must be filled out with octets of zeros.  The first of these would
be interpreted as the end-of-options option, and the remainder as
internet header padding.
Every internet module must be able to act on every option.  The
Security Option is required if classified, restricted, or
compartmented traffic is to be passed.
 Checksum
The internet header checksum is recomputed if the internet header is
changed.  For example, a reduction of the time to live, additions or
changes to internet options, or due to fragmentation.  This checksum
at the internet level is intended to protect the internet header
fields from transmission errors.
There are some applications where a few data bit errors are
acceptable while retransmission delays are not.  If the internet
protocol enforced data correctness such applications could not be
supported.
 Errors
Internet protocol errors may be reported via the ICMP messages [3].

Interfaces

 The functional description of user interfaces to the IP is, at best,
 fictional, since every operating system will have different
 facilities.  Consequently, we must warn readers that different IP
 implementations may have different user interfaces.  However, all IPs
 must provide a certain minimum  set of services to guarantee that all
 IP implementations can support the same protocol hierarchy.  This
 section specifies the functional interfaces required of all IP
 implementations.
 Internet protocol interfaces on one side to the local network and on
 the other side to either a higher level protocol or an application
 program.  In the following, the higher level protocol or application


                                                      September 1981

Internet Protocol Specification


 program (or even a gateway program) will be called the "user" since it
 is using the internet module.  Since internet protocol is a datagram
 protocol, there is minimal memory or state maintained between datagram
 transmissions, and each call on the internet protocol module by the
 user supplies all information necessary for the IP to perform the
 service requested.
 An Example Upper Level Interface
 The following two example calls satisfy the requirements for the user
 to internet protocol module communication ("=>" means returns):
 SEND (src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt => result)
where:
  src = source address
  dst = destination address
  prot = protocol
  TOS = type of service
  TTL = time to live
  BufPTR = buffer pointer
  len = length of buffer
  Id  = Identifier
  DF = Don't Fragment
  opt = option data
  result = response
    OK = datagram sent ok
    Error = error in arguments or local network error
Note that the precedence is included in the TOS and the
security/compartment is passed as an option.
 RECV (BufPTR, prot, => result, src, dst, TOS, len, opt)
where:
  BufPTR = buffer pointer
  prot = protocol
  result = response
    OK = datagram received ok
    Error = error in arguments
  len = length of buffer
  src = source address
  dst = destination address
  TOS = type of service
  opt = option data


[Page 32]

September 1981

                                                   Internet Protocol
                                                       Specification


 When the user sends a datagram, it executes the SEND call supplying
 all the arguments.  The internet protocol module, on receiving this
 call, checks the arguments and prepares and sends the message.  If the
 arguments are good and the datagram is accepted by the local network,
 the call returns successfully.  If either the arguments are bad, or
 the datagram is not accepted by the local network, the call returns
 unsuccessfully.  On unsuccessful returns, a reasonable report must be
 made as to the cause of the problem, but the details of such reports
 are up to individual implementations.
 When a datagram arrives at the internet protocol module from the local
 network, either there is a pending RECV call from the user addressed
 or there is not.  In the first case, the pending call is satisfied by
 passing the information from the datagram to the user.  In the second
 case, the user addressed is notified of a pending datagram.  If the
 user addressed does not exist, an ICMP error message is returned to
 the sender, and the data is discarded.
 The notification of a user may be via a pseudo interrupt or similar
 mechanism, as appropriate in the particular operating system
 environment of the implementation.
 A user's RECV call may then either be immediately satisfied by a
 pending datagram, or the call may be pending until a datagram arrives.
 The source address is included in the send call in case the sending
 host has several addresses (multiple physical connections or logical
 addresses).  The internet module must check to see that the source
 address is one of the legal address for this host.
 An implementation may also allow or require a call to the internet
 module to indicate interest in or reserve exclusive use of a class of
 datagrams (e.g., all those with a certain value in the protocol
 field).
 This section functionally characterizes a USER/IP interface.  The
 notation used is similar to most procedure of function calls in high
 level languages, but this usage is not meant to rule out trap type
 service calls (e.g., SVCs, UUOs, EMTs), or any other form of
 interprocess communication.






                                                      September 1981

Internet Protocol


APPENDIX A: Examples & Scenarios

Example 1:

 This is an example of the minimal data carrying internet datagram:


0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver= 4 |IHL= 5 |Type of Service| Total Length = 21 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification = 111 |Flg=0| Fragment Offset = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time = 123 | Protocol = 1 | header checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | source address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | destination address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+

                   Example Internet Datagram
                           Figure 5.
 Note that each tick mark represents one bit position.
 This is a internet datagram in version 4 of internet protocol; the
 internet header consists of five 32 bit words, and the total length of
 the datagram is 21 octets.  This datagram is a complete datagram (not
 a fragment).










[Page 34]

September 1981

                                                   Internet Protocol


Example 2:

 In this example, we show first a moderate size internet datagram (452
 data octets), then two internet fragments that might result from the
 fragmentation of this datagram if the maximum sized transmission
 allowed were 280 octets.


0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver= 4 |IHL= 5 |Type of Service| Total Length = 472 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification = 111 |Flg=0| Fragment Offset = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time = 123 | Protocol = 6 | header checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | source address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | destination address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | \ \ \ \ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Example Internet Datagram
                           Figure 6.










                                                      September 1981

Internet Protocol


 Now the first fragment that results from splitting the datagram after
 256 data octets.


0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver= 4 |IHL= 5 |Type of Service| Total Length = 276 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification = 111 |Flg=1| Fragment Offset = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time = 119 | Protocol = 6 | Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | source address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | destination address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | \ \ \ \ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Example Internet Fragment
                           Figure 7.











[Page 36]

September 1981

                                                   Internet Protocol


 And the second fragment.


0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver= 4 |IHL= 5 |Type of Service| Total Length = 216 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification = 111 |Flg=0| Fragment Offset = 32 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time = 119 | Protocol = 6 | Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | source address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | destination address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | \ \ \ \ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Example Internet Fragment
                           Figure 8.












                                                      September 1981

Internet Protocol


Example 3:

 Here, we show an example of a datagram containing options:


0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver= 4 |IHL= 8 |Type of Service| Total Length = 576 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification = 111 |Flg=0| Fragment Offset = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time = 123 | Protocol = 6 | Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | source address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | destination address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Opt. Code = x | Opt. Len.= 3 | option value | Opt. Code = x | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Opt. Len. = 4 | option value | Opt. Code = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Opt. Code = y | Opt. Len. = 3 | option value | Opt. Code = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | \ \ \ \ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Example Internet Datagram
                           Figure 9.









[Page 38]

September 1981

                                                   Internet Protocol


APPENDIX B: Data Transmission Order

The order of transmission of the header and data described in this document is resolved to the octet level. Whenever a diagram shows a group of octets, the order of transmission of those octets is the normal order in which they are read in English. For example, in the following diagram the octets are transmitted in the order they are numbered.


0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 1 | 2 | 3 | 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 5 | 6 | 7 | 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 9 | 10 | 11 | 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Transmission Order of Bytes
                           Figure 10.

Whenever an octet represents a numeric quantity the left most bit in the diagram is the high order or most significant bit. That is, the bit labeled 0 is the most significant bit. For example, the following diagram represents the value 170 (decimal).


                        0 1 2 3 4 5 6 7 
                       +-+-+-+-+-+-+-+-+
                       |1 0 1 0 1 0 1 0|
                       +-+-+-+-+-+-+-+-+
                      Significance of Bits
                           Figure 11.

Similarly, whenever a multi-octet field represents a numeric quantity the left most bit of the whole field is the most significant bit. When a multi-octet quantity is transmitted the most significant octet is transmitted first.






                                                      September 1981

Internet Protocol




























[Page 40]

September 1981

                                                   Internet Protocol


                            GLOSSARY


1822

      BBN Report 1822, "The Specification of the Interconnection of
      a Host and an IMP".  The specification of interface between a
      host and the ARPANET.

ARPANET leader

      The control information on an ARPANET message at the host-IMP
      interface.

ARPANET message

      The unit of transmission between a host and an IMP in the
      ARPANET.  The maximum size is about 1012 octets (8096 bits).

ARPANET packet

      A unit of transmission used internally in the ARPANET between
      IMPs. The maximum size is about 126 octets (1008 bits).

Destination

      The destination address, an internet header field.

DF

      The Don't Fragment bit carried in the flags field.

Flags

      An internet header field carrying various control flags.

Fragment Offset

      This internet header field indicates where in the internet
      datagram a fragment belongs.

GGP

      Gateway to Gateway Protocol, the protocol used primarily
      between gateways to control routing and other gateway
      functions.

header

      Control information at the beginning of a message, segment,
      datagram, packet or block of data.

ICMP

      Internet Control Message Protocol, implemented in the internet
      module, the ICMP is used from gateways to hosts and between
      hosts to report errors and make routing suggestions.



                                                      September 1981

Internet Protocol Glossary


Identification

      An internet header field carrying the identifying value
      assigned by the sender to aid in assembling the fragments of a
      datagram.

IHL

      The internet header field Internet Header Length is the length
      of the internet header measured in 32 bit words.

IMP

      The Interface Message Processor, the packet switch of the
      ARPANET.

Internet Address

      A four octet (32 bit) source or destination address consisting
      of a Network field and a Local Address field.

internet datagram

      The unit of data exchanged between a pair of internet modules
      (includes the internet header).

internet fragment

      A portion of the data of an internet datagram with an internet
      header.

Local Address

      The address of a host within a network.  The actual mapping of
      an internet local address on to the host addresses in a
      network is quite general, allowing for many to one mappings.

MF

      The More-Fragments Flag carried in the internet header flags
      field.

module

      An implementation, usually in software, of a protocol or other
      procedure.

more-fragments flag

      A flag indicating whether or not this internet datagram
      contains the end of an internet datagram, carried in the
      internet header Flags field.

NFB

      The Number of Fragment Blocks in a the data portion of an
      internet fragment.  That is, the length of a portion of data
      measured in 8 octet units.


[Page 42]

September 1981

                                                   Internet Protocol
                                                            Glossary


octet

      An eight bit byte.

Options

      The internet header Options field may contain several options,
      and each option may be several octets in length.

Padding

      The internet header Padding field is used to ensure that the
      data begins on 32 bit word boundary.  The padding is zero.

Protocol

      In this document, the next higher level protocol identifier,
      an internet header field.

Rest

      The local address portion of an Internet Address.

Source

      The source address, an internet header field.

TCP

      Transmission Control Protocol:  A host-to-host protocol for
      reliable communication in internet environments.

TCP Segment

      The unit of data exchanged between TCP modules (including the
      TCP header).

TFTP

      Trivial File Transfer Protocol:  A simple file transfer
      protocol built on UDP.

Time to Live

      An internet header field which indicates the upper bound on
      how long this internet datagram may exist.

TOS

      Type of Service

Total Length

      The internet header field Total Length is the length of the
      datagram in octets including internet header and data.

TTL

      Time to Live



                                                      September 1981

Internet Protocol Glossary


Type of Service

      An internet header field which indicates the type (or quality)
      of service for this internet datagram.

UDP

      User Datagram Protocol:  A user level protocol for transaction
      oriented applications.

User

      The user of the internet protocol.  This may be a higher level
      protocol module, an application program, or a gateway program.

Version

      The Version field indicates the format of the internet header.



















[Page 44]

September 1981

                                                   Internet Protocol


                           REFERENCES


[1] Cerf, V., "The Catenet Model for Internetworking," Information

 Processing Techniques Office, Defense Advanced Research Projects
 Agency, IEN 48, July 1978.

[2] Bolt Beranek and Newman, "Specification for the Interconnection of

 a Host and an IMP," BBN Technical Report 1822, Revised May 1978.

[3] Postel, J., "Internet Control Message Protocol - DARPA Internet

 Program Protocol Specification," RFC 792, USC/Information Sciences
 Institute, September 1981.

[4] Shoch, J., "Inter-Network Naming, Addressing, and Routing,"

 COMPCON, IEEE Computer Society, Fall 1978.

[5] Postel, J., "Address Mappings," RFC 796, USC/Information Sciences

 Institute, September 1981.

[6] Shoch, J., "Packet Fragmentation in Inter-Network Protocols,"

 Computer Networks, v. 3, n. 1, February 1979.

[7] Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Beranek and

 Newman, August 1979.

[8] Postel, J., "Service Mappings," RFC 795, USC/Information Sciences

 Institute, September 1981.

[9] Postel, J., "Assigned Numbers," RFC 790, USC/Information Sciences

 Institute, September 1981.